31. August 2022 | Mission Mars Express

Ein riesiges Talsystem mit einem Rätsel

  • Auf Mars gibt es zahlreiche sogenannte chaotische Gebiete – eine regellose Häufung von Gesteinsblöcken unterschiedlichster Größe und tafelbergähnliche Erhebungen. Diese Landschaftsformen gibt es auf der Erde nicht.
  • Sie entstehen, wenn Eisreservoire im Untergrund schmelzen und große Wassermengen plötzlich freigesetzt werden und abfließen. Dadurch bricht die Oberfläche über den neuen Hohlräumen zusammen.
  • Das Gebiet auf den Bildern liegt in einem gewaltigen Talsystem von 8.000 Kilometer Länge.
  • Die Aufnahmen mit der DLR-Kamera HRSC (High Resolution Stereo Camera) entstanden am 24. April 2022 während des 23.133sten Orbits (Umlaufs) der Raumsonde Mars Express um den Mars.
  • Die Bildauflösung beträgt 19 Meter pro Bildpunkt (Pixel).
  • Schwerpunkte: Raumfahrt, Exploration des Sonnensystems, Mars, DLR-Stereokamera

Diese Bilder, die mit der DLR-Marskamera HRSC aufgenommen wurden, zeigen ein sogenanntes chaotisches Gebiet auf unserem Nachbarplaneten. Es befindet sich in der Nähe des Holden-Kraters im südlichen Marshochland und gehört zu einem gewaltigen Talsystem, durch das einst beträchtliche Wassermassen in nördliche Richtung geflossen sind.

Die High Resolution Stereo Camera (HRSC) kartiert seit 2004 an Bord der ESA-Raumsonde Mars Express den Roten Planeten. Sie wurde am Deutschen Zentrum für Luft- und Raumfahrt (DLR) entwickelt und wird am DLR-Institut für Planetenforschung in Berlin-Adlershof betrieben. Ihre Daten sind eine wichtige Ressource für die Erforschung der Geologie und Klimageschichte des Mars.

„Chaotic Terrains“ – eine marsianische Spezialität

Im Zentrum der HRSC-Bilder (Nr. 1, 2, 6, 7) erkennt man eine regellose Häufung von Gesteinsblöcken unterschiedlichster Größe und tafelbergähnliche Erhebungen. Solch ein Gebiet wird als chaotisches Gebiet (oder engl. „chaotic terrain“) bezeichnet. Auf dem Mars kommt diese Landschaftsform recht zahlreich vor. Sie entsteht, wenn Eisreservoire im Untergrund zum Beispiel durch vulkanisch induzierte Wärme schmelzen und beträchtliche Mengen Wasser ganz plötzlich freigesetzt werden und abfließen. Dadurch kollabiert die Oberfläche über den neu entstandenen Hohlräumen und die Landschaft stürzt in sich zusammen. Der genaue Auslöser für die Bildung des chaotischen Gebiets hier an dieser Stelle ist bis heute jedoch unklar. Auf der Erde gibt es keine vergleichbare Landschaftsform.

Das chaotische Gebiet befindet sich an der tiefsten Stelle einer großen, bis zu 2.000 Meter tiefen Senke (gut zu erkennen in der topographischen Karte, der blau gefärbte Bereich, Bild Nr. 6). Sie wird inoffiziell auch „Holden-Becken“ genannt, da der Einschlagskrater Holden gut ein Drittel davon belegt. Am nordöstlichen Rand der Senke (rechts) beginnt das Ladon-Tal, wie besonders gut am unteren Bildrand zu erkennen ist. In der linken Bildhälfte ist der östliche Hang der Senke zu sehen. Hier gibt es mehrere, relativ „frische“ Täler, die in das Becken münden. Teilweise sind sie bis zu 500 Meter breit.

Folge dem Wasser! – Das Uzboi-Ladon-Morava-System

In den beiden letzten Jahrzehnten stand die Erforschung des Mars' bei der NASA unter dem Motto „Follow the Water“, also „Folge dem Wasser!“ Das Holden-Becken und der dort befindliche Holden-Krater, der nach dem amerikanischen Astronomen Edward Singleton Holden (1846-1914) benannt wurde, gehören zum sogenannten Uzboi-Ladon-Morava-System, kurz ULM-System. Dabei handelt es sich um ein etwa 8.000 Kilometer langes Abflusssystem bestehend aus einer Vielzahl von Tälern und Vertiefungen, durch das Wasser von der südlich gelegenen Argyre Planitia bis in Chryse Planitia im nördlichen Tiefland des Mars transportiert wurde. Das ist länger als der Flusslauf des Nils, des längsten fließenden Gewässers auf der Erde. In der hemisphärischen Übersichtskarte lässt sich gut nachvollziehen, wie vor mehr als drei Milliarden Jahren Wasser aus dem südlichen Marshochland in das nördliche Tiefland abfloss.

Hemisphärische Übersichtskarte des Uzboi-Ladon-Morava-Abflusssystems mit möglichem früherem Wasserstand
Credit:

NASA/JPL-Caltech/MOLA; FU Berlin – künstlerische Darstellung

DownloadDownload

Vor dem Einschlag, der den Holden-Krater mit einem Durchmesser von 140 Kilometern schuf, bestand das ULM-Ausflusssystem durchgehend aus einer langen Reihe von Kanälen und Senken, die aus dem Argyre-Becken hervorgingen und nach Norden durch das Uzboi-Tal in das Holden-Becken flossen. Von dort verlief es weiter durch die Ladon-Täler (Ladon Valles) in das, ebenfalls inoffiziell benannte, „Ladon-Becken“, das vermutlich auch ein sehr großes, altes Einschlagsbecken darstellt (siehe gestrichelte Linien in der globalen Übersichtskarte). Schließlich führte der Abfluss weiter durch die Morava Valles in Richtung Norden. Es wird angenommen, dass sogar Ares Vallis durch die Abflüsse des ULM-Systems entstanden ist. Im Mündungsgebiet von Ares Vallis landete und operierte vor genau 25 Jahren der erste mobile Marsroboter, Sojourner, der Mission Mars Pathfinder. Die Untersuchungen vom Spätsommer 1997 zeigten, dass dort episodisch gewaltige, mit großer Energie talwärts strömende Wassermassen die Landschaft gestaltet hatten.

Zusammengenommen kann das Einzugsgebiet dieses Entwässerungssystems an der Oberfläche und auch im Grundwasserspiegel bis zu neun Prozent der Marsoberfläche umfasst haben. Der Einschlag, der den Holden-Krater erzeugte, ereignete sich höchstwahrscheinlich im Marszeitalter des Späten Noachium (von vor etwa 3,85 bis 3,7 Milliarden Jahren), nach der Hauptaktivität des ULM-Systems. Die Bildung des Holden-Kraters unterbrach das ULM-Abflusssystem, aber das Uzboi-Tal im Süden durchbrach die bis zu 900 Meter hohen Kraterwände, wodurch Holden zum Endbecken für die Uzboi- und Nirgal-Täler wurde. An der Einmündung von Uzboi Vallis in den Krater entstand ein Flussdelta, was ein unwiderlegbarer Beweis dafür ist, dass sich im Krater Holden ein See gebildet hat. Ein ähnliches, recht bekanntes Flussdelta ist direkt nördlich von Holden, im Krater Eberswalde, zu finden (eingezeichnet auf der hemisphärischen Übersichtskarte). Dieses Vogelfußdelta wurde einst als Landestelle für die Marsmission Mars Science Laboratory (MSL) mit dem Rover Curiosity vorgeschlagen, hat aber den Wettlauf gegen die anderen Kandidaten nicht gewonnen.

Obwohl es bei Holden kein sichtbares Ausflusstal gibt, ist an der Ostseite des Kraters ein Einsturzgebiet zu erkennen. Es gibt keine Hinweise auf signifikante Ab- und Durchflüsse nach dem Einschlag, aber einige kleinere Abflüsse könnten entlang des ULM-Systems aufgetreten sein, nachdem der Holden-Krater gebildet wurde. Sicherlich wurde der Boden des Beckens, in dem der Holden-Krater gebildet wurde, mit großen Mengen an Auswurfmaterial verfüllt.

Die komplexe Geschichte des ULM-Systems gepaart mit der Überprägung durch Einschläge macht die Region zu einem interessanten Ziel für zukünftige Untersuchungen. Sie wird, wie oben erwähnt, seit einem Vierteljahrhundert immer wieder als höchst interessante Landestelle diskutiert. Darüber hinaus enthalten sowohl Ladon Valles als auch insbesondere der Holden-Krater geschichtete und tonmineralhaltige Sedimente, die Spuren von mikrobiellem Leben besonders gut konservieren könnten, was sie zu potentiellen Zielen für die Suche nach möglichem früheren Leben auf dem Roten Planeten macht.

Bildverarbeitung

Die Aufnahmen mit der HRSC (High Resolution Stereo Camera) entstanden am 24. April 2022 während des 23.133sten Orbits (Umlaufs) der Raumsonde Mars Express um den Mars. Die Bildauflösung beträgt 19 Meter pro Bildpunkt (Pixel). Die Bildmitte liegt bei etwa 329 Grad östlicher Länge und 25 Grad südlicher Breite. Die Farbaufsicht (Bild 1) wurde aus dem senkrecht auf die Marsoberfläche gerichteten Nadirkanal und den Farbkanälen der HRSC erstellt, die perspektivischen Schrägansichten (Bilder 2, 5) wurden aus den Stereokanälen der HRSC berechnet. Das Anaglyphenbild (Bild 7), das bei Betrachtung mit einer Rot-Blau- oder Rot-Grün-Brille einen dreidimensionalen Eindruck der Landschaft vermittelt, wurde aus dem Nadirkanal und einem Stereokanal abgeleitet. Die in Regenbogenfarben kodierte Aufsicht (Bild 6) beruht auf einem digitalen Geländemodell (DTM) der Region, von dem sich die Topographie der Landschaft ableiten lässt. Der Referenzkörper für das HRSC-DTM ist eine Äquipotentialfläche des Mars (Areoid). Die systematische Prozessierung der Kameradaten erfolgte am DLR-Institut für Planetenforschung. Mitarbeitende der Fachrichtung Planetologie und Fernerkundung der Freien Universität Berlin erstellten daraus die hier gezeigten Bildprodukte.

Das HRSC-Experiment auf Mars Express

Die High Resolution Stereo Camera wurde am Deutschen Zentrum für Luft- und Raumfahrt (DLR) entwickelt und in Kooperation mit industriellen Partnern gebaut (EADS Astrium, Lewicki Microelectronic GmbH und Jena-Optronik GmbH). Das Wissenschaftsteam unter Leitung des Principal Investigators (PI) Dr. Thomas Roatsch vom DLR-Institut für Planetenforschung besteht aus 50 Co-Investigatoren, die aus 34 Institutionen und zehn Nationen stammen. Die Kamera wird vom DLR-Institut für Planetenforschung in Berlin-Adlershof betrieben.

Diese Bilder in hoher Auflösung und weitere Bilder der HRSC finden Sie in der Mars Express-Bildergalerie auf flickr.

Verwandte Links

Verwandte Nachrichten

Kontakt

Elke Heinemann

Leitung Digitale Kommunikation
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Kommunikation
Linder Höhe, 51147 Köln
Tel: +49 2203 601-1852

Dr. Thomas Roatsch

Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Institut für Planetenforschung
Rutherfordstraße 2, 12489 Berlin

Ulrich Köhler

Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Institut für Planetenforschung
Rutherfordstraße 2, 12489 Berlin

Dr. Daniela Tirsch

Principal Investigator HRSC
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Institut für Planetenforschung
Rutherfordstraße 2, 12489 Berlin