Dawn
Start: 27. September 2007, Missionsende: November 2018
Wissenschaftliche Ziele
Durch die enorme Gravitationskraft des Riesenplaneten Jupiter wurde ihre Evolution aber frühzeitig weitgehend gestoppt, mit der Folge, dass die Asteroiden in einem Zustand erhalten geblieben sind, der etwa zehn Millionen Jahre nach Bildung unseres Sonnensystems erreicht wurde. Diese Protoplaneten sind damit so etwas wie ein Geschichtsbuch der Planetenevolution, mit dem unser Verständnis von der Entwicklung der Erde und der anderen Planeten verbessert werden kann.
Aus diesem Grund hatte die amerikanische Raumfahrtbehörde NASA am 27. September 2007 die Weltraummission „Dawn“ gestartet. Die Dawn-Sonde hat zwischen 2011 und 2018 zwei der größten Asteroiden, Vesta und Ceres, eingehend untersucht.
Das erste Ziel der Sonde war Vesta, der zweitschwerste aller Asteroiden (Vesta repräsentiert acht Prozent der gesamten Asteroidenmassen). Der Asteroid wurde 1807 entdeckt, und hat die Form eines dreiachsigen Ellipsoids mit den Abmessungen 280 x 270 x 230 Kilometer. Der mittlere Abstand zur Sonne von 350 Millionen Kilometern (2,36 Astronomische Einheiten) führt zu einer Umlaufzeit von 3,63 Jahren. Vesta ist ein entwickelter Asteroid mit zwei großen Einschlagkratern am Südpol. Die Dawn-Sonde schwenkte am 15. Juli 2011 in einen Orbit um Vesta ein und erforschte den Kleinplaneten zwischen August 2011 und August 2012 für etwa ein Jahr. Die Orbithöhen wurden über mehrere Monate nach und nach von anfänglich 2.735 Kilometern auf schließlich 210 Kilometer verringert. Die mit den Bordkameras erfassten Bilder zeigten Details der Oberfläche von bis zu 20 Metern pro Pixel.
Durch den Einsatz seiner vier Instrumente wurde der Asteroid Vesta fast komplett kartiert und seine mineralogische Zusammensetzung erforscht. Die Bestimmung seines genauen Gravitationfeldes schloss die Untersuchung ab. Das Alter von Vesta wurde aus der Verteilung bestimmter Isotopenhäufigkeiten auf 4,565 Milliarden Jahre errechnet. Die Eigenrotation von Vesta beträgt 5,34 Stunden. Seine mittlere Dichte beträgt 3,475 Gramm pro Kubikzentimeter. Am auffälligsten auf der Oberfläche sind konzentrische Gräben oder Rinnen um den Äquator herum und vor allem zwei sich überlagernde Einschlagkrater mit etwa 500 Kilometern Durchmesser im Südpolbereich. Dieser „Rheasilvia“ genannte Bereich entstand vor etwa einer Milliarde Jahren durch Kollision von Vesta mit einem Kometen oder einem anderen Asteroiden. Bemerkenswert ist der 20 Kilometer hohe Zentralberg im Krater. Krater Rheasilvia überlagert den älteren Krater Veneneia (400 Kilometer Durchmesser), der vor rund zwei Milliarden Jahren entstand. Eine weitere Entdeckung waren so genannte „dunkle Flecken“ in Kratern, deren Ursprung noch nicht erklärt werden kann. Die deutschen „Framing Cameras“ (siehe unten) nahmen bis September 2012 mehr als 31.000 Bilder von Vesta auf, die jetzt intensiv ausgewertet werden.
Ceres, das zweite Hauptziel von Dawn ist der größte Asteroid (Nach neuer Definition durch die Internationale Astronomische Union gilt er seit Herbst 2006 als Zwergplanet) und wurde 1801 entdeckt. Seine Größe beträgt etwa 960 x 930 Kilometer. Ceres repräsentiert sogar etwa 30 Prozent der Masse aller Asteroiden. Die mittlere Entfernung zur Sonne beträgt 414 Millionen Kilometer (2,76 Astronomische Einheiten), die Umlaufzeit um die Sonne 4,6 Jahre. Ceres ist ein „nasser“ Asteroid mit einem Wassergehalt von etwa 20 Prozent. Er hat seit seiner Entstehung noch keine großen Veränderungen seiner Form und Oberflächenbeschaffenheit erfahren. Dawn erreichte Ceres am 6. März 2015 und untersuchte ihn aus verschiedenen Orbits heraus.
Die Dawn-Sonde nutzte als Hauptantrieb für ihre Mission zu den Asteroiden einen Ionenantrieb („Solar Electric Propulsion“, SEP), der gegenüber einem konventionellen Raketenmotor den Vorteil eines etwa viermal größeren spezifischen Impulses hat, bei allerdings sehr geringer Schubleistung. Der SEP hat einen sehr geringen Verbrauch an Xenon-Gas von etwa 0,28 Kilogramm pro Tag, was zu einem niedrigen Startgewicht der Raumsonde führte. Dies ermöglichte die Nutzung einer kleineren und preiswerten Startrakete. Der Nachteil der geringen SEP-Schubleistung (etwa 90 Millinewton) ist eine sehr lange Flugzeit, die die Sonde bis zu ihren Zielen benötigte. Während der ersten fünf Jahre Flugzeit bis September 2012 hatte Dawn lediglich 267 von 425 Kilogramm ihres Xenon-Gasvorrats verbraucht. Der SEP hat mit insgesamt etwa 50.000 Stunden Betriebszeit seine Zuverlässigkeit bewiesen. Die Dawn-Sonde legte seit September 2007 mehr als 5,7 Milliarden Kilometer zurück.
Instrumente
Dawn führte folgende Untersuchungen an den beiden Asteroiden durch: die optische Kartierung, die Bestimmung ihrer internen Struktur, Dichte und Homogenität durch Ermittlung von Masse, Form und Rotationsrate, die Bestimmung der chemischen Zusammensetzung und der Häufigkeiten verschiedener Elemente, die Erstellung topographischer Profile der Oberfläche, die Bestimmung der Größe des metallischen Kerns bei Vesta sowie die Suche nach Plattentektonik, Vulkanismus und Suche nach Wasser führenden Mineralien.
Dazu trug Dawn vier Instrumente als Nutzlast: Zwei Framing Cameras (FCs) vom Max-Planck-Institut für Sonnensystemforschung in Göttingen und vom Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin-Adlershof, ein Mapping Spectrometer (VIR) von der Agenzia Spaziale Italiana (ASI/CNR), ein Gamma-Ray and Neutron Detector (GRaND) des Los Alamos National Laboratory (LANL) und das Radio Science Package (RAD) des NASA Jet Propulsion Laboratory.
Principal Investigator (PI) der Dawn-Mission war Dr. Christopher T. Russell von der University of California, Los Angeles (UCLA). Er wurde unterstützt durch ein internationales Team, zu dem auch zahlreiche deutsche Wissenschaftler gehörten, unter anderem von der Universität Münster und der Freien Universität Berlin. Zum Zweck der Kartierung von Vesta hatte das Team dessen Oberfläche in fünfzehn Kartierungsgebiete aufgeteilt. Die Ziele dieser Auswertung waren Die Erstellung geologischer Karten, die Kartierung der Krater, inklusive deren zeitlicher Einordnung, die Erfassung und Kartierung von „Dunklem Material“ und von „Hellem Material“ auf der Oberfläche und die Erstellung von 3-D-Profilen der Vesta-Oberfläche.
Deutscher Beitrag zu Dawn
Vom Max-Planck-Institut für Sonnensystemforschung (MPS) in Göttingen wurden mit Unterstützung des DLR-Instituts für Planetenforschung (IPF) in Berlin die zwei „Framing Cameras" (FC‘s) für die Dawn-Mission entwickelt und gebaut. Die FCs sind eine missionskritische Nutzlast, weil sie auch für die Navigation der Sonde während des Zielanflugs und der Orbits um die Asteroiden benötigt werden. Aus Sicherheitsgründen (Redundanz) wurden zwei baugleiche FCs auf Dawn installiert. Bis Februar 2017 hatten die FCs insgesamt rund 80.000 Bilder aufgenommen, davon über 50.000 von Ceres.
Hauptzweck der Kameras war aber die optische Kartierung der Kleinplaneten aus der Umlaufbahn. Die Ceres-Mission startete am 23. April 2015 mit einem „Rotation Characterization Orbit“ (RC, 13.500 Kilometer Bahnhöhe). Der RC dauerte bis zum 9. Mai 2015 und ermöglichte Bildauflösungen bis etwa 1,3 Kilometer pro Pixel. Auf den RC folgte der „Survey Orbit“ (4.400 Kilometer Bahnhöhe vom 6. bis 30. Juni 2015) mit einer Auflösung von 410 Metern pro Pixel. Der „High Altitude Mapping Orbit“ (HAMO, 1.470 Kilometer Bahnhöhe, 4. August bis 15. Oktober 2015) ermöglichte Detailbilder bis etwa 140 Meter pro Pixel. Als niedrigster Orbit um Ceres schloss der „Low Altitude Mapping Orbit“ (LAMO, 385 Kilometer Bahnhöhe) ab 15. Dezember 2015 die Erkundung von Ceres ab. Die maximale Bildqualität lag etwa bei 35 Metern pro Pixel. Nominal sollte die LAMO-Phase bis zum 30. Juni 2016 dauern, sie wurde aber bis zum 2. September 2016 verlängert. Dann hob die NASA den Orbit wieder an, auf zunächst 1.484 Kilometer und zuletzt auf über 7.200 Kilometer. Die Mission wurde weiter verlängert, bis der Hydrazin-Vorrat für die Lageregelungstriebwerke verbraucht war. Im November 2018 endete die Mission.
Missionsdaten und technische Parameter
Start: | 27. September 2007 vom Kennedy Space Center, Cape Canaveral, Florida, USA |
Trägerfahrzeug: | Delta 2925H-Rakete |
Rendezvous mit Vesta: | Oktober 2011 - September 2012; Orbits in 2.375, 685 und 210 Kilometern Höhe |
Rendezvous mit Ceres: | März 2015 - Juni 2017; Orbits in 13.500, 4.400, 1.470, 375, dann wieder 1.470, 7.200 und 20.000 Kilometern Höhe |
Antrieb der Sonde: | 3 Xenon-Ionentriebwerke (solar-elektrisch) |
Missionsdauer: | bis November 2018 |
Masse der Sonde: | 1.220 Kilogramm beim Start, 750 Kilogramm ohne Treibstoff |
Abmessungen: | Höhe ca. 2 Meter; Spannweite 20 Meter |
Energieversorgung: | Galliumarsenid-Sonnenkollektoren, 10 Kilowatt an der Erde, 1 Kilowatt an Ceres |
Links
- DLR-Nachricht - Dawn schweigt: Das Ende einer erfolgreichen Mission
- NASA-Mitteilung - NASA’s Dawn Mission to Asteroid Belt Comes to End
- DLR-Sonderseiten zur Dawn-Mission
- DLR-Presseinformation - NASA-Asteroidenmission Dawn vor dem Abschluss - Kleinplanet Ceres in bisher bester Auflösung kartiert
- DLR-Presseinformation - Eisiger Vulkan auf Zwergplanet Ceres
- DLR-Presseinformation - Zwergplanet Ceres: Rätselhaftes Material an Kratern und Bergen
- DLR-Presseinformation - Video: Fliegend über die Krater-Welten von Zwergplanet Ceres
- DLR-Nachricht - Tiefflug über Zwergplanet Ceres
- MPS-Pressemitteilung - Raumsonde Dawn löst Rätsel um Ceres‘ helle Flecken
- DLR-Presseinformation - Erster Atlas von Zwergplanet Ceres veröffentlicht
- DLR-Presseinformation - Zwergplanet Ceres: Neue Namen, neue Karten, neue Fragen
- DLR-Presseinformation - Ceres: Kraterwände steiler als die Eiger-Nordwand
- DLR-Pressemitteilung - Ceres: Ungewöhnliche Hangrutschungen und instabile Kraterwände
- DLR-Pressemitteilung - Fruchtbarkeitsgöttinnen auf Zwergplanet Ceres
- DLR-Presseinformation - Viele helle Flecken und ein pyramidenförmiger Berg auf Ceres
- DLR-Nachricht - Flug über Zwergplanet Ceres
- DLR-Presseinformation - Zwergplanet Ceres: Krater, Einsturzsenken und ungewöhnliche Linien
- DLR-Presseinformation - Dawn: Näher und näher an Zwergplanet Ceres
- DLR-Presseinformation - 15 Tage Rundflug um Zwergplanet Ceres abgeschlossen
- DLR-Presseinformation - Über dem Nordpol des Zwergplaneten Ceres
- DLR-Presseinformation - Vielfalt der Farben auf Ceres
- DLR-Nachricht - Im Bann der eisigen Ceres
- NASA News Release - NASA Spacecraft Becomes First to Orbit a Dwarf Planet (engl.)
- DLR-Presseinformation - Raumsonde Dawn auf der Zielstrecke
- DLR-Presseinformation - Verheißungsvolle Kraterlandschaften auf Zwergplanet Ceres
- DLR-Pressemitteilung - Dem Zwergplaneten Ceres so nah
- MPS-Pressemitteilung - Dawn: Riesige Krater und ein heller Fleck
- DLR-Nachricht - Dawn: Unterwegs zur eisigen Ceres
- DLR-Nachricht - Dawn hat Sichtkontakt mit dem Zwergplaneten Ceres
- DLR-Pressemitteilung: „Straßenkarte“ von Asteroid Vesta online
- NASA - Dawn Mission
- NASA-JPL - Dawn Mission Home Page
- Orbital Sciences - Dawn Fact Sheet
- DLR-Institut für Planetenforschung - Dawn
- Max-Planck-Institut für Sonnensystemforschung - Dawn
- Agenzia Spaziale Italiana - Dawn