Simulation workflow
Every simulation starts with an as accurate representation of the reality as possible. This is achieved by detailed 3-D surface model data of the object of interest.
SAR simulation tools are typically used in the design process of SAR systems in the form of parametric studies that consider topics like prediction of image quality parameters, testing of image reconstruction algorithms, motion errors along the synthetic aperture, etc. The recent operational experience of space-borne SAR systems with sub-meter resolution (e.g. SAR-Lupe, COSMOSkyMed, and TerraSAR-X) for reconnaissance purposes demonstrated the importance of the understanding of SAR-specific image effects, especially foreshortening and layover, as well as shadow characteristics for the interpretation of complex targets like airplanes and ships.
SAR simulation could be a key to supply image operators with possibilities that simplify image interpretation and assist in applications like signature analysis or recognition. Therefore, a novel simulation framework has been established. It tries to fulfill all the above demands to the highest possible degree to reflect reality. The modular and flexible structure of the simulator allows adjusting and expanding it for different tasks.