Crop cultivation begins in the EDEN ISS Antarctic laboratory
- Planting begins in Antarctica: the EDEN ISS laboratory commences operation as a greenhouse.
- DLR scientist Paul Zabel to remain in Antarctica until the end of 2018, supported by the project team from the control room at DLR Bremen.
- Focus: space, missions
The time has come: the EDEN ISS laboratory in the Antarctic has been set up, the first seedlings have been placed in the growth cabinets, and after eight weeks, the majority of the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) team has returned to Germany. For DLR scientist Paul Zabel the only member of the EDEN ISS team to remain in the Antarctic until the end of 2018, this means that his winter deployment on the Neumayer III station operated by the Alfred Wegener Institute (AWI) has begun. Cucumbers, tomatoes and peppers will be the first home-grown crops at the world's southernmost tip. "Our aim is that there will always be something to harvest over the coming months," says DLR Project Manager, Daniel Schubert. After all, the harvest is intended to replenish the diet of the 10-person winter crew.
The last few weeks have been busy for the scientists and engineers who assembled a working greenhouse on the eternal Antarctic ice from the container parts supplied. Temperatures of minus five to minus 10 degrees Celsius, coupled with strong winds, made their work much more strenuous than in their native Bremen, where the EDEN ISS laboratory was first tested. And these temperatures are set to drop significantly over the coming weeks. But in addition to the adverse weather conditions, the isolated location, which makes the delivery of fresh food impossible, also resembles the scenario of a mission to Mars, for example. Paul Zabel, together with nine other winter hermits, will live in the Antarctic station over the coming months – during a space mission, the team would be just as small. "And this is exactly what we aim to test – we want our greenhouse to produce 'space' tomatoes, lettuce and the like under realistic environmental conditions in such surroundings," says Daniel Schubert from the DLR Institute of Space Systems.
From basil to lemon balm
In addition to tomatoes, cucumbers and strawberries, the scientists are also planting lettuce, rocket, radishes, peppers, basil, chives, parsley, lemon balm and mint. The plants are irradiated with artificial light. Instead of soil, which would not be present during a long-term mission in a spaceship, for example, a nutrient solution fortifies the cultivated vegetables and herbs. The water in this closed-loop system is recycled – and only leaves the container in the harvested food.
"All the sub-systems such as lighting, irrigation, air circulation and cameras have been tested and work perfectly". However, the harsh environment around the greenhouse has resulted in a few problems: for instance, the researchers had to find a solution when condensation formed in their container. "It makes a difference whether the container is in a city or in the Antarctic," emphasises Schubert. Setting up the laboratory alone was laborious. If a tool was missing, for example, they had to return to the Neumayer station 400 metres away to fetch it. Not only did all this result in a stressful time for the DLR team – it also provided a wealth of experience required for a subsequent space mission.
Living and working on the eternal ice
By the evening, explains Schubert, you were already exhausted. The DLR researchers had to get used to working in the laboratory, the extremely dry and icy Antarctic air, living in a confined space on the station with a total of 50 scientists and station crew and the four-bed rooms with shared bathrooms in the corridor. At this time of year, the Sun barely rises above the horizon before disappearing again an hour later at sunset. "You lose all sense of time and only know what day it is by what there is for lunch," says Schubert. "On Friday there is fish and Monday is pizza day." The scientists were also repeatedly visited by penguins curiously approaching the container and observing their work.
Harvesting in the Antarctic
Before Paul Zabel stayed behind as a ‘harvester’ in the greenhouse, he underwent training courses and received some final instructions: how do the various sub-systems work? Which plants need which care? He is now solely responsible for vegetable cultivation in the Antarctic: "I'm excited about this challenge," says Zabel. "It is similar to what astronauts will be doing on other planets in future: I will think about home a lot. But at least I have got something green to look at here in the greenhouse in the Antarctic. And of course I am rather sad that I will not be able to see my family and friends for many months." The rest of the team will remain in contact with him via a video link and telephone. While Paul Zabel is now tending the first plants to grow in the Antarctic, his DLR colleagues are watching from the mission control centre in Bremen, from where the participating researchers are actively involved and supporting the winter hermit.
The working of the greenhouse (see above) is described in this
International cooperation
The EDEN ISS project will be conducted during an overwintering mission at the German Antarctic station Neumayer III, in collaboration with the Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research (AWI). A large number of other international partners are contributing to a research consortium under the auspices of DLR, ensuring that the greenhouse will work smoothly in the Antarctic: Wageningen University and Research (Netherlands), Airbus Defence and Space (Germany), LIQUIFER (Austria), the National Research Council (Italy), the University of Guelph (Canada), Enginsoft (Italy), Thales Alenia Space (Italy), Arescosmo (Italy), Heliospectra (Sweden), the Limerick Institute of Technology (Ireland), Telespazio (Italy), and the University of Florida (USA) all form part of the consortium of the EDEN ISS project. The project is financed with funds from the EU Framework Programme for Research and Innovation under project number 636501.