Control for Haptic Rendering
Workshop zu interaktiven VR-Technologien für On-Orbit Servicing

Thomas Hulin
DLR, Institute of Robotics and Mechatronics
Motivation

Why haptic rendering?

haptic rendering = computation and display of forces from the VR

assembly simulation training
Introduction

Visual rendering 30Hz

Display

Input device

Human

Visual modality

Haptic modality

Models

Data

Object pose

Visual signals

Haptic signals

Haptic device

Data

Haptic rendering 1kHz

Force

Pose movements

Visual signals

Data
Introduction

data → visual rendering (30Hz) → display (visual signals)

models → object pose → e.g. camera position → visual modality

haptic rendering (1kHz) → haptic device (haptic signals) → movements

forces → pose → human (haptic modality)
Introduction

Visual rendering → 30Hz → Display

Visual signals → Human

Haptic signals → Haptic device

Data → Object pose → Human

Goal: Maximal immersion

Data → Haptic rendering → 1kHz → Haptic device

Human → Movements → Haptic signals

Models

Data → Visual signals → Visual signals
Requirements for haptic devices

- 6 DoF passive and active (feedback of forces and torques)
- Large workspace
- Low inertia
- Large maximal forces & high dynamic
- High sampling rate (rule of thumb: at least 1kHz)
- Small delays
- High structural stiffness

Additionally: Safety aspect
Light Weight Robot

Properties:
- 7 DoF
- Torque sensor in each joint \(\rightarrow\) impedance control
- Workspace comparable to that of a human arm
- Low weight (~15 kg)
- Fast sampling
 1kHz: Cartesian
 3kHz: inside joints
- Safety concept (redundant sensors, safety breaks, deadman loop, …)

well suited as haptic device

LBR1 (1991)
LBR2 (1998)
LBR3 (2001)
KUKA LBR (2006)
Bimanual Haptic Device
Fields of Application

Telepresence

Virtual Assembly / Training

Requirements

Haptic simulations must be
- safe
- intuitive
- performant (transparent)
Fields of Application

Field: Telepresence

How can we meet these requirements by haptic control?

- safe
- intuitive
- performant (transparent)
Feed-Forward Control

Motivation: Reduce effective inertia ➔ improve intuitive usage

\[F_{\text{fwd}} = \frac{Z_m}{1+k} \]

Total impedance

\[Z_{\text{total}} = \frac{X}{F} = \frac{Z_m}{1+k} \]

Effective reduction for the LWR: ca. 66%
Null Space Optimization

Motivation: Avoid singularities & maximize distance to human operator

Different criteria:
- Maximize distance to user
- Optimize configuration (joint limits, singularities)
 ➔ Compliant behavior
Collision Avoidance

Motivation: Requirement for safe operation

- Collisions between robots & table
- Collisions between the two robots

For both:
- Tool and each link are checked
- Spring-damper model
Stable Interaction

Motivation: Requirement for safe operation

- Collisions between virtual objects
- Spring-damper model
Stable Interaction
Virtual springs are active!
Stable Interaction
Virtual springs are active!
Stable Interaction

Virtual springs are active!

\[F \]

energy gain \(E_G \)

spring \(K \)

\[x_{wall} \]

\[x \]
Stable Interaction
Virtual springs are active!

\[F \]

\[k \]

energy gain \(E_G \)

\[x_{\text{wall}} \]

\[x \]

delay

delay

\[K \]

\[B \]
Stable Interaction
Virtual springs are active!

For which B is the haptic system stable?
Assumptions

- 1 DoF
- Linear model of human
- No nonlinear effects
- Delay is permitted
- Direct coupling between m_L and m_H

Virtual Wall

K: virtual stiffness
B: virtual damping

Haptic Device

b_L: physical damping
m_L: mass

Human

k_H: physical stiffness
b_H: physical damping
m_H: mass
System Description

Assumptions

\[m = m_L + m_H \]
\[b = b_L + b_H \]
\[k = k_H \]

Virtual Wall
- \(K \): virtual stiffness
- \(B \): virtual damping

Haptic Device
- \(b_L \): physical damping
- \(m_L \): mass

Human
- \(k_H \): physical stiffness
- \(b_H \): physical damping
- \(m_H \): mass
System Description
Assumptions

\[K : \text{virtual stiffness} \]
\[B : \text{virtual damping} \]
\[k : \text{physical stiffness} \]
\[b : \text{physical damping} \]
\[m : \text{mass} \]
System Description
Control Loop

Consists of continuous- and discrete-time blocks

- Use ZOH-Equivalent of continuous-time block
 (= Exact description!)
System Description

Control Loop

\[\mathcal{F}(z, T, m, k, b) = \frac{(c_2 + c_3 - 2) z + (c_2 + c_3 - 2 e^{-bT/m})(b^2 - 4km) + bc_1 (c_3 - c_2) (z - 1)}{2k(z^2 - (c_2 + c_3)z + e^{-bT/m})(4km - b^2)} \]

with

\[c_1 = \sqrt{\frac{(bT/m)^2 - 4kT^2}{m}} \]
\[c_2 = e^{-\left(bT/m + c_1\right)/2} \]
\[c_3 = e^{-\left(bT/m - c_1\right)/2} \]
System Description
Normalization

\[\alpha = \frac{K \cdot T^2}{m} : \text{normalized virtual stiffness} \]
\[\beta = \frac{B \cdot T}{m} : \text{normalized virtual damping} \]
\[\gamma = \frac{k \cdot T^2}{m} : \text{normalized physical stiffness} \]
\[\delta = \frac{b \cdot T}{m} : \text{normalized physical damping} \]

Characteristic Equation

\[0 = \left((c_3 + c_2 - 2)c_1 + (c_3 - c_2)\delta \right) (\alpha + \beta) z^2 \]
\[+ \left(\left((c_3 + c_2 - 2e^{-\delta})c_1 + (c_2 - c_3)\delta \right) \alpha \right) z \]
\[+ 2 \left(\left(1 - e^{-\delta} \right) c_1 + (c_2 - c_3)\delta \beta \right) z \]
\[- 2 \left(z^2 - z(c_3 + c_2) + e^{-\delta} c_1 \gamma z^{1+d} \right) \]
\[+ \left((2e^{-\delta} - c_3 - c_2)c_1 + (c_3 - c_2)\delta \beta \right) \]

\[\text{with } c_1 = \sqrt{\delta^2 - 4\gamma} \]
\[c_2 = e^{-(\delta + c_1)/2} \]
\[c_3 = e^{-(\delta - c_1)/2} \]

▷ Mass \(m \) and Sampling Period \(T \) dropped out!
Normalized Stability Boundaries

Simple case: \(\gamma = \delta = 0 \)

\[
\begin{align*}
\alpha &= K \cdot T^2 / m \\
\beta &= B \cdot T / m \\
\gamma &= k \cdot T^2 / m \\
\delta &= b \cdot T / m \\
d &= T_d / T
\end{align*}
\]
Normalized Stability Boundaries

\[\gamma = \delta = 0 \]

\[
\begin{align*}
\alpha &= \frac{K \cdot T^2}{m} \\
\beta &= \frac{B \cdot T}{m} \\
\gamma &= \frac{k \cdot T^2}{m} \\
\delta &= \frac{b \cdot T}{m} \\
d &= \frac{T_d}{T}
\end{align*}
\]
Normalized Stability Boundaries

\[\gamma = \delta = 0 \]

\[
\alpha = \frac{K \cdot T^2}{m} \\
\beta = \frac{B \cdot T}{m} \\
\gamma = \frac{k \cdot T^2}{m} \\
\delta = \frac{b \cdot T}{m} \\
d = \frac{T_d}{T}
\]
Parameter Range

for haptic devices holds

\[
\frac{b_L}{m_L} < 0.625 \text{s}^{-1} \quad \frac{T}{T} \leq 0.001 \text{s}
\]

for human arms holds

\[
0 \leq \frac{k_H}{m_H} < 710 \text{s}^{-2} \quad 0 \leq \frac{b_H}{m_H} < 12.6 \text{s}^{-1}
\]

\[
0 \leq \gamma < 1 \cdot 10^{-3} \quad 0 \leq \delta < 15 \cdot 10^{-3}
\]
Normalized Stability Boundaries

$$\gamma = [0, 0.001], \ \delta = [0, 0.015], \ d = 0$$

$$\alpha = K \cdot \frac{T^2}{m}$$
$$\beta = B \cdot \frac{T}{m}$$
$$\gamma = k \cdot \frac{T^2}{m}$$
$$\delta = b \cdot \frac{T}{m}$$
$$d = \frac{T_d}{T}$$
Experiments
Conclusions

- The DLR Bimanual Haptic Device
 Light Weight Robots
 Applications

- Control Aspects
 Feed-Forward Control
 Null Space Optimization
 Collision Avoidance
 Virtual Contacts

- Stability Analysis
 Stability Boundaries
Thank you for your attention!