

Institut für Technische Thermodynamik, Solarforschung

Luft-Erdwärmetauscher L-EWT

Planungsleitfaden Teil 2

Anhang
Version 0.9 November 2004

Der zweite Teil des Planungsleitfadens für Luft-Erdwärmetauscher (L-EWT) befasst sich vorwiegend mit der Auslegung von großen L-EWT für Nichtwohngebäude.

Der Planungsleitfaden besteht aus mehreren Modulen.

Das Anwendungsziel der einzelnen Module ist in der Datei LEWT_PLF2_EINLEITUNG_09.pdf detailliert beschrieben. Insgesamt existieren folgende Module:

LEWT_PLF2_LIESMICH_09.pdf	Übersicht
LEWT_PLF2_EINLEITUNG_09.pdf	Einleitung
LEWT_PLF2_SIMULATION_09.pdf	Numerisches Simulationspro- gramm
LEWT_PLF2_BENCHMARK_09.pdf	Überschlägiges Abschätzverfahren
LEWT_PLF2_KENNZAHL_09.pdf	Qualitätsbewertung
LEWT_PLF2_DATENBLATT_09.pdf	Standardisierte Datenblätter
LEWT_PLF2_TECHNISCHEDETAILS_09.pdf	Planungshinweise, Mathematik und Details
LEWT_PLF2_PROJEKTE_09.pdf	Projektberichte
LEWT_PLF2_ANHANG_09.pdf	Tabellen, Simulationsergeb- nisse, Literaturstellen

Jedes Modul kann unter www.ag-solar.de als PDF-Version einzeln geladen werden.

Der erste Teil, der die Basisinformationen und Auslegungshinweise für einfache Kleinsysteme bei Wohngebäuden enthält, ist erhältlich über **www.ag-solar.de** und **www2.dlr.de/ET/sonnenofen/nesa** sowie als Druckversion vom DLR, Köln.

Hauptautor dieses Moduls:

Dr.-Ing. Gerd Dibowski

Kontakt: gerd.dibowski@dlr.de

Inhaltsverzeichnis

1	STANDARDERGEBNISSE AUSGEWAHLTER MUSTERANLAGEN	3
2	VARIATIONSPARAMETER VON MUSTERLÖSUNGEN	4
	2.1 DIE TEMPERATURLEITFÄHIGKEIT A ALS ERSTER VARIATIONSPARAMETER BEI DER AUSLEGUNGSBERECHNUNG	4
	2.2 DER METEOROLOGISCHE STANDORT ALS ZWEITER VARIATIONS- PARAMETER BEI DER AUSLEGUNGSBERECHNUNG	
3	MUSTERERGEBNISSE AUSGEWÄHLTER KONFIGURATIONEN	7
	 3.1 MUSTERLÖSUNGEN FÜR KLEINE L-EWT MIT NENN-LUFTVOLUMENSTRÖMEN BIS 600 M³/H 3.2 MUSTERLÖSUNGEN UND SENSITIVITÄT FÜR NENN-LUFTVOLUMENSTRÖME BIS 3000 M³/H 	
4	ZUSAMMENGEFASSTE ERGEBNISSE WESENTLICHER L-EWT-KONFIGURATIONEN	18
5	UNTERSUCHUNGSMETHODEN DER LUFTHYGIENISCHEN MESSUNGEN	47
6	LITERATURVERZEICHNIS	51
	6.1 Webadressen	66

Anhang

1 Standardergebnisse ausgewählter Musteranlagen

Nachfolgend werden umfangreiche Ergebnisse numerischer Simulationen mit den wichtigsten Betriebsparametern zusammengefasst dargestellt. Des weiteren werden Ergebnisse gezeigt, die die Sensivitivät einer Systemleistung oder eines Ertrags bei Änderung der wesentlichen Ranbedingungen, Ort, Tiefe und Bodenkennwerte darstellen.

Es ist aufgrund der konstruktiven Systemeigenschaften eines L-EWT naheliegend, dass die Bodeneigenschaften einen wesentlichen Einfluss auf das Betriebsergebnis haben. Wie aus der Fourier'schen Wärmeleitungsgleichung [Baehr1], die den Wärmetransport in (homogenen) festen Körpern beschreibt, hervorgeht, bestimmen einige wichtige Bodenkennzahlen dieses Verhalten. Es zeigt sich allerdings, dass die Bestimmung der Dichte ρ_E , besonders aber der spezifischen Wärmekapazität c_E und der Wärmeleitfähigkeit λ_E zum Einen sehr aufwändig und kostenintensiv ist und zum Anderen keine sehr genauen Ergebnisse liefert. Hat man den Eindruck, diese Stoffkennzahlen für "seinen" Boden dennoch gut zu kennen, fehlen immer noch ganz wichtige Informationen darüber, wie der schwankende Feuchtegehalt des Bodens über ein Jahr verläuft und welchen Einfluss er auf Veränderungen der aufgeführten Stoffwerte hat [Dibo+Ritt]. Nur wenn man diese Informationen vorliegen hat, kann streng genommen eine Auslegungsberechnung durchgeführt werden.

Tabelle A1 Typische Bodenkennwerte nach Sanner

Bodenart	Korndichte	Wärmeleitfähigkeit [W/mK]	Spezif.Wärmekap. [kJ/kg/K]
Torf	n.a.	0,2 – 0,7	n.a.
Kies, fein, trocken	2,73	0,39 – 0,41	n.a.
Kies, mittel, trocken	2,77	0,41 – 0,43	n.a.
Kies, grob, trocken	2,71	0,47 - 0,52	n.a.
Sand, div.	n.a.	0,2-2,3	n.a.
Sand, trocken	2,66	0,27-0,57	0,84
Sand, feucht	2,66	0,58-1,75	0,91-1,0
Sand, gesättigt	2,66	1,73-5,02	1,36
Sand, gesättigt, gefroren	2,66	2,94	1,03
Sand/Kies	2,7	1,54	0,95
Sand/Kies, gefroren	2,7	1,25	0,86
Sand/Kies, tonig, trocken	2,71	0,52	n.a.
Sand/Kies, tonig, gesättigt	2,71	2,46	n.a.
Sand, verdichtet	n.a.	1,11-1,25	n.a.
Schluff, div.	n.a.	1,0-2,3	n.a.
Schluff, div. Trocken	n.a.	0,38	n.a.
Ton	2,64	< 1,7	n.a
Lehm, tonig	2,39	< 1,4	n.a.
Ton, div.	n.a.	0,9-2,22	0,93 (für 2,22)
Ton, feucht	n.a.	1,11-1,25	n.a.
Erde, tonig, feucht	n.a.	1,51-2,5	n.a.
Erde, trocken	n.a.	0,34-0,36	n.a.

2 Variationsparameter von Musterlösungen

Wie bereits im Modul EINLEITUNG beschrieben wird, führt der Quotient $\lambda_{\rm E}/(\rho_{\rm E}\cdot c_{\rm E})$ zu der Temperaturleitfähigkeit $a_{\rm E}$, die das Berechnungsergebnis wesentlich beeinflusst. Die Temperaturleitfähigkeit ist hierbei ein Maß, wie schnell das Erdreich auf Temperaturänderungen reagiert. Unabhängig von der Vielfalt der möglichen Wertekombinationen aller Bodenzusammensetzungen kann festgestellt werden, dass für ALLE Bodenarten die Temperaturleitfähigkeit nur ganz bestimmte Grenzwerte annehmen kann. Berechnet man nun einen vordefinierten L-EWT mit den beiden Grenzwerten von $a_{\rm E}$, liegt ein richtiges Ergebnis auf jeden Fall innerhalb dieser Spanne. In einem zweiten Schritt muss der Planer dann aufgrund der ihm vorliegenden Informationsdetails entscheiden, ob er "sein" Ergebnis eher am oberen oder unteren Rand der beiden Ergebnisse vermutet.

Der vorsichtige Planer liegt auf jeden Fall immer mit dem kleineren Wert von Ertrag und maximaler Temperaturspanne richtig und kann davon ausgehen, dass das tatsächliche Ergebnis wahrscheinlich etwas besser ist, was ihm eine "stille Reserve" einbringt.

Aufgrund dieser Überlegungen werden Resultate von numerischen Systemberechnungen zusammengefasst dargestellt, die u.a. neben den Ergebnissen für einen Boden mit mittleren Stoffeigenschaften auch die Schwankungsbreite darstellt, die sich aus den oben ableitbaren Erläuterungen ergeben. Die Ergebnisse beinhalten bereits den Einfluss von Ermüdungseffekten bei Dauerbetrieb und die Störeinflüsse durch Inteferenzen bei der Registeranordnung.

2.1 Die Temperaturleitfähigkeit a als erster Variationsparameter bei der Auslegungsberechnung

Hinzuweisen ist darauf, dass die Bodeneigenschaften feucht und schwer nicht zwangsläufig auf einen hohen Wert für a_E hindeuten. So liegt der Wert für z.B. wassergesättigten Ton bei ca. $3.6\cdot 10^{-7}\,\text{m}^2/\text{s}$, also eher am unteren Grenzwert der Temperaturleitfähigkeit a_E .

Aus der Literatur lassen sich für die Grenzen der Temperaturleitfähigkeit a_E für insgesamt alle Bodenarten folgende Grenzwerte annehmen.

a hoch	1,09	· 10⁻⁵ m²/s
	0,28	10 11178

Diese Werte stellen die theoretischen Grenzwerte dar, die bei absoluter Sättigung bzw. bei vollständiger Trocknung des Bodens erreicht werden können. Für realistische Fälle bewegen sich diese Werte aufeinander zu, da auch ein gesättigter Boden noch Lufteinschlüsse und ein trockner Boden noch Restfeuchte besitzt. Die daraus ableitbaren realistischen Grenzwerte liegen dann bei etwa:

a hoch	0,9	·10 ⁻⁶ m²/s
a niedrig	0,45	10 11175

Da über ein vollständiges Jahr betrachtet weder ständig Sättigung oder Trockenheit vorliegt, sind diese Werte für praktische Berechnungen noch weiter eingrenzbar, was die Schwankungsbreite der möglichen Ergebnisse in den meisten Fällen noch etwas verkleinert, wobei allerdings zu beachten ist, das a_E eben nicht nur vom Feuchtegehalt des Bodens abhängt (s.o). Die nachfolgend aufgeführten Ergebnisse beziehen sich somit auf die Werte in Tabelle A3.

2.2 Der meteorologische Standort als zweiter Variationsparameter bei der Auslegungsberechnung

Ein weiterer zu beachtender Einfluss auf das Betriebsergebnis ist der meteorologische Standort an dem ein L-EWT betrieben werden soll. Es ist zu erwarten, dass ein baugleiches System an zwei unterschiedlichen Standorten nicht zu gleichen Ergebnissen führen wird. Wie in [Dibo+Ritt] gezeigt werden konnte, sind die meteorologischen Unterschiede innerhalb aller erfassten deutschen Standorte i.a. nicht erheblich. Allerdings kann von Interesse sein, wie sich ein bestimmter L-EWT in einer schattigen Tallage am Alpenrand oder an der windigen Küste zu einem warmen Standort wie z.B. im Badischen unterscheidet. Insofern werden ebenfalls zu den Bodenart-bedingten Ergebnisbereichen gegenüber einem Standort mit mittleren meteorologischen Parametern auch zwei extreme Standorte (wärmer, kälter) berücksichtigt.

Als meteorologischer Mittelwert gilt der Referenz-Standort Giessen. Nach DIN 4710 "Meteorologische Daten" [DIN 4710] entspricht die mittlere Jahres-Umgebungstemperatur von Giessen dem Mittelwert der Jahres-Umgebungstemperaturen aller in [DIN 4710] aufgeführten Standorte innerhalb der Bundesrepublik. Dieser Wert liegt bei **8,93** °C.

Tabella A	2 Monatlick	a Temperature	schwarta für va	rechiedene S	tandorta r	ach DIN 4710
Tabelle A.	z wonanci	ie remberanire	ckwene ili ve	ischiedene 5	ianoone i	1acn 1 my 47 to

	DIN 4710 Meteoro- logische Daten	Tagesmitteltem- pe-raturen nach	Amplitudenminima und -maxima zum Jahresmittelwert °C			
		DIN 4710 °C	Min °C	Max °C	Mittelwert Amplitude	
1	Essen	9,47	7,87	7,53	7,7	
2	Berlin	9,03	9,73	9,47	9,6	
3	Braunschweig	8,57	8,77	8,43	8,6	
4	Bremerhaven	8,73	7,83	7,78	7,8	
5	Frankfurt/Main	10,04	8,94	8,86	8,9	
6	Gießen	8,94	8,74	8,66	8,7	
7	Hamburg- Fuhlsbüttel	8,39	7,89	8,01	7,95	
8	Mannhein	10,16	8,96	9,04	9,00	
9	München	8,12	9,62	9,38	9,5	
10	Nürnberg-Flughafen	8,48	9,48	9,33	9,4	
11	Regensburg	8,06	10,16	9,64	9,9	
12	Stuttgart- Hohenheim	8,58	8,88	8,73	8,8	
13	Trier-Petrisberg	9,03	8,13	8,18	8,15	

Für die Bestimmung des Betriebsverhaltens eines L-EWT ist bei Wohn- bzw. Niedrigenergie- oder Passivhäusern –im Gegensatz zu L-EWT für große Bürogebäude- die winterliche Heizperiode von entscheidender Bedeutung bei der Anlagenplanung. Daher reicht die Betrachtung der Jahresmitteltemperatur eines Standortes für die Auslegung, speziell für den Vorwärmfall, nicht aus. Einem, gegenüber den Durchschnittswerten der Wintermonate, relativ kalter Standort folgt nicht zwangsläufig auch ein relativ kalter Sommer. So folgt z.B. dem eher kalten Winter in Freiburg i.Brsg. ein vergleichsweise sehr warmer Sommer, was in etwa zu einem Jahresmittelwert der Außenlufttemperatur führt. Für die Heizperiode als ausschließlichen Betrachtungszeitraum gilt gegenüber Giessen als besonders kalter Standort Oberstdorf im Allgäu, als relativ milder Standort Köln, in der rheinischen Tiefebene. Bild A1 bestätigt diese Feststellung anhand von Meteorologischen Daten.

Tabelle A3 Mittlere Monats-Außenlufttemperaturen der Referenzstandorte

Mittlere Monats-Außenlufttemperaturen der Referenzstandorte in °C									
Geographische Lage	Oberstdorf	Giessen	Köln						
Nördliche Breite	51,29	50,35	50,47						
Östliche Länge	-7,12	-8,42	-7,18						
Höhe über NN [m]	843	XXX	50						
November	2,3	4,4	6,2						
Dezember	-0,4	1,3	4,0						
Januar	-1,7	0,5	2,3						
Februar	-1,0	1,6	2,9						
März	1,8	4,7	6,2						

Quelle: Meteonorm

Innerhalb dieser Werte befinden sich die meisten Standorte in Deutschland. Entsprechend bilden sich zum Teil deutliche Unterschiede der Bodentemperaturprofile aus.

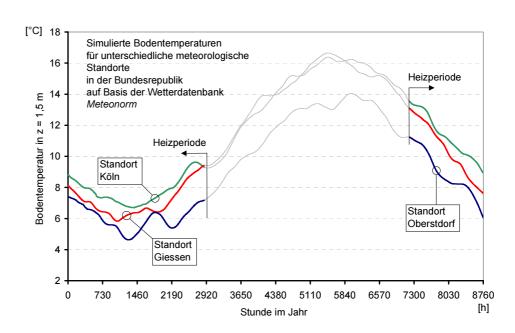


Bild A1
Bodentemperaturen der verschiedenen Standorte

3 Musterergebnisse ausgewählter Konfigurationen

Die nachstehenden Angaben beruhen auf Ergebnissen numerischer Simulationsverfahren, die das dynamisch Verhalten thermischer Austauschprozesse von L-EWT im Prinzip gut abbilden können. Die aufgeführten Erträge gelten für eine Standard-Verlegetiefe von 1,5 Metern.

Die Rohrdurchmesser werden durch den geforderten Volumenstrom bestimmt, wobei zu beachten ist, dass sich mit der Reduzierung des Durchmessers die Ertragsleistung nur unwesentlich verbessert, allerdings die Druckverluste deutlich. Die Höhe der Druckverluste bestimmen dabei den Wirkungsgrad und die Arbeitszahl des L-EWT und damit die Primärenergieeinsparung bzw. die CO₂-Einsparung. Eine eher langsame Strömungsgeschwindigkeit im Bereich von etwa 2 m/s kann bei richtiger konstruktiver Ausführung die angestrebten Ziele gewährleisten, wobei bei dieser Geschwindigkeit auch nicht schalltechnischen Problemen zu rechnen ist. Nachfolgend werden die aufgeführten Ergebnisse nach den Luftvolumina unterteilt (Tabelle A4). Bild A2 beschreibt die Positionen der Einzelergebnisse für die nachfolgend gerechneten Musteranlagen.

Tabelle A4

L-EWT-Musterergebnisse für Luftvolumenströme in m³/h					
150 300 600					
1000 1500 3000					

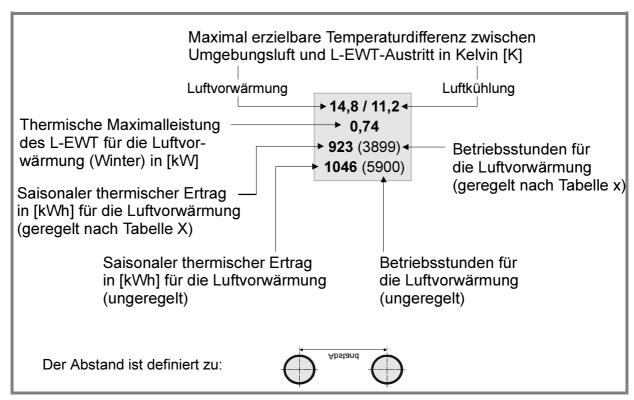


Bild A2 Erläuterungen der Ergebnispositionen in den Musterdiagrammen

Die maximalen Temperaturdifferenzen und die thermische Maximalleistung für die Luftvorwärmung werden unabhängig von einer Regelung erzielt, da unter solchen Maximalsituationen der L-EWT immer eingeschaltet wäre. Anhand der thermischen Erträge kann der regelungsbedingte Unterschied gezeigt werden, wobei erst über die Differenz der Betriebsstunden der unnötige Energieinput bei nichtgeregelten Anlagen deutlich wird. Die thermischen Erträge (Kühllastsenken) im sommerlichen Kühlfall sind im Wohnhausbereich im Gegensatz zu großen (Büro-) Gebäuden nicht von Bedeutung. Die hier wichtige maximal erreichbare Temperaturdifferenz für kurzfristige Kühleffekte ist allerdings aufgeführt. Die Geometrien der nachfolgend aufgeführten Beispielanlagen sind so gewählt, dass bei geregeltem Berieb eine positive Primärenergiebilanz gewährleistet ist. Allerdings wurden ökonomische Zwänge insofern beachtet, dass man auf "die letzten 10 Meter Rohr" verzichtet hat, in Kenntnis, dass damit das Betriebsverhalten, trotz des abflachenden Lufttemperaturprofils entlang der Strömungsrichtung im Rohr, dennoch verbessert worden wäre.

3.1 Musterlösungen für kleine L-EWT mit Nenn-Luftvolumenströmen bis 600 m³/h

Die Ergebnistabellen spiegeln quasi eine Sensitivitätsanalyse wider. Das Betriebsverhalten eines meteorologisch mittleren Standortes mit einem Boden mit mittleren Leitungseigenschaften befindet sich im Zentrum der Tabelle, deutlich umrahmt. Die benachbarten Felder zeigen, wie sich die Ergebnisse verändern, wenn man den Standort, oder den Boden, oder beides verändert.

Tabelle A5 Numerische Simulationsergebnisse; Ergebnisabweichungen als Funktion von Bodenart und Standort bezogen auf einen Standort mit mittleren Basisparametern

Einzelro	hr	Volumenstror	m 150 m³/h Ø D	N200 Länge: 3	0 m v _{L,max}	= 1,33 m/s
Tempe- raturleit- fähigkeit a des Erd-	0,4	14,8 / 11,2 0,74 923 (3899) 1046 (5900)	13,7 / 10,8 0,7 762 (3530) 884 (5431)	13,6 / 12,3 0,68 618 (3000) 748 (5083)	K/K kW kWh/h kWh/h	Verlege- tiefe 1,5 m
reichs in 10 ⁻⁶ m ² /s	0,6	16,1 / 11,7 0,81 1083 (4224) 1188 (6072)	15,1 / 11,5 0,76 899 (3857) 1007 (5692)	14,6 / 13,0 0,73 723 (3282) 842 (5282)	K/K kW kWh/h kWh/h	
	0,9	16,5 / 11,9 0,84 1154 (4266) 1266 (6128)	15,8 / 12,0 0,8 960 (3901) 1078 (5834)	14,9 / 13,2 0,75 765 (3298) 894 (5395)	K/K kW kWh/h kWh/h	
Oberstdorf Giessen Köl Musterstandorte der Heizperiode			Köln zperiode	Luftvorv	/ärmung	

Des weiteren lässt sich aus den Ergebnissen schließen, mit welchen Veränderungen bei Änderung der Geometrie ungefähr zu rechnen ist. Für diese Standardfälle liefert kein Simulationsprogramm bessere Ergebnisse.

Das erste Beispiel in Tabelle A6 verdeutlicht, dass ein L-EWT bei der Luftvorwärmung am kältesten Standort (Oberstdorf) das beste Betriebsergebnis liefert. Dies liegt u.a. daran, dass das Bodentemperaturprofil dem mittleren Außenlufttemperaturprofil nur stark gedämpft folgt und dieser Effekt durch die generell größeren Temperaturunterschiede zwischen Luft-und Erdreich an diesem Standort stärker ausgeprägt sind, als an den "wärmeren" Orten. Es sei nochmals darauf hingewiesen, dass Änderungen des inhomogenen Feuchteprofils des Erdreichs nur indirekt über die Temperaturleitfähigkeit erfasst werden können. Daher sollte mit Ergebnisschwankungen von etwa 30% gerechnet werden. Wer hier "auf Nummer Sicher gehen" will, rechnet immer mit dem schwächsten Ergebnis der jeweiligen Tabelle.

Tabelle A6 Numerische Simulationsergebnisse; Ergebnisabweichungen als Funktion von Bodenart und Standort bezogen auf einen Standort mit mittleren Basisparametern

Einzelrohr		Volumenstro	m 300 m³/h Ø □	N250 Länge:	35 m V _{L,max}	, = 1,7 m/s
Tompo		12,3 / 9,74	11,4 / 9,44	11,4 / 10,6	K/K	Verlege-
Tempe- raturleit-	0,4	1,23	1,15	1,15	kW	tiefe
fähigkeit	0,4	1368 (3358)	1120 (2974)	906 (2473)	kWh/h	1,5 m
a des Erd-		1666 (5788)	1410 (5309)	1209 (4968)	kWh/h	1,5 111
reichs in 10 ⁻⁶ m ² /s	0,6	13,8 / 10,4	12,8 / 10,2	12,7 / 11,45	K/K	
10 111-75		1,39	1,29	1,28	kW	
		1719 (3856)	1413 (3454)	1146 (2927)	kWh/h	
		1964 (5975)	1669 (5587)	1412 (5178)	kWh/h	
		14,7 / 10,8	13,9 / 10,9	13,3 / 11,9	K/K	
	0,9	1,48	1,4	1,34	kW	
	0,9	1953 (4139)	1622 (3769)	1304 (3175)	kWh/h	
		2166 (6108)	1848 (5818)	1549 (5389)	kWh/h	
		Oberstdorf	Giessen	Köln		
		Muster	standorte der Hei	zperiode	Luftvorw	/ärmung

Ab einem Volumenstrom von etwa 600 m³/h kann über den Einsatz eines Registers an Stelle eines Einzelrohres nachgedacht werden.

Weniger aus energetischer Sicht, als mehr aufgrund der Tatsache, dass Rohre mit sehr kleinen Durchmessern (d <150mm) gegenüber dem entsprechenden Einzelrohr kostengünstiger sein können (z.B. Kabelschutzrohr, siehe PLANUNGSHINWEISE).

Bei größeren Systemen kommt bei richtiger Auslegung auch der energie-technische Vorteil eines Registers zum Tragen.

Tabelle A7 Numerische Simulationsergebnisse; Ergebnisabweichungen als Funktion von Bodenart und Standort bezogen auf einen Standort mit mittleren Basisparametern

Einzelro	hr	Volumenstror	n 600 m³/h Ø D	N400 Länge: 6	0 m v _{L,max}	= 1,33 m/s
Tempe- raturleit- fähigkeit a des Erd-	0,4	12,8 / 10,14 2,58 2851 (3392) 3440 (5770)	12,0 / 9,9 2,41 2340 (2999) 2922 (5275)	12,0 / 11,1 2,41 1909 (2525) 2505 (4940)	K/K kW kWh/h kWh/h	Verlege- tiefe 1,5 m
reichs in 10 ⁻⁶ m ² /s	0,6	14,2 /10,7 2,85 3493 (3851) 3989 (5958)	13,2 /10,6 2,7 2890 (3462) 3405 (5568)	13,0 / 11,8 2,62 2342 (2933) 2877 (5159)	K/K kW kWh/h kWh/h	
	0,9	14,8 / 11,4 3 3904 (4150) 4326 (6091)	14,0 / 11,2 2,82 3247 (3742) 3714 (5812)	13,5 / 12,14 2,71 2608 (3157) 3111 (5373)	K/K kW kWh/h kWh/h	
Oberstdorf Giessen Köln Musterstandorte der Heizperiode			Luftvorw	/ärmung		

Tabelle A8 Numerische Simulationsergebnisse; Ergebnisabweichungen als Funktion von Bodenart und Standort bezogen auf einen Standort mit mittleren Basisparametern

Registe	er	Volumenstror	n 600 m³/h Ø D	N200 Länge: 3	0 m v _{L,max}	= 1,33 m/s
Tempe- raturleit- fähigkeit a des Erd-	0,4	11,5 / 11,2 2,32 1913 (2317) 2451 (4391)	11,4 / 11 2,3 1500 (1824) 2071 (3999)	11,6 / 12,6 2,33 1419 (1746) 2021 (3951)	K/K kW kWh/h kWh/h	Verlege- tiefe 1,5 m
reichs in 10 ⁻⁶ m ² /s	0,6	12,7 / 12,1 2,56 2294 (2605) 2756 (4613)	12,5 / 11,8 2,52 1800 (2088) 2368 (4290)	12,6/13,3 2,53 1683 (1976) 2280 (4195)	K/K kW kWh/h kWh/h	
	0,9	15,5 / 11,54 3,12 3769 (3895) 4211 (5921) Oberstdorf	14,4 / 11,6 2,9 3066 (3491) 3556 (5681) Giessen	14,3 /12,5 2,87 2592 (3055) 3085 (5220) Köln	K/K kW kWh/h kWh/h	4 Rohre Abstand: 0,7 m
			standorte der Hei		Luftvorv	/ärmung

3.2 Musterlösungen und Sensitivität für Nenn-Luftvolumenströme bis 3000 m³/h

Mit den Musterergebnissen bis zu einem Volumenstrom von 3000 m³/h lassen sich auch über Ergebnisaddition Abschätzungen sehr großer Anlagen vornehmen, da sie i.d.R. eine konstruktive Wiederholung der hier betrachteten Modelle darstellen. Da gerade bei großen Systemen die Vielfalt in Frage kommender Auslegungsvarianten besonders groß ist, sind die hier aufgeführten Angaben eine komfortable Hilfe zur Eingrenzung geeigneter Systeme.

Dennoch sei darauf nochmal darauf hingewiesen, dass die nach der Vorauswahl noch übrig gebliebenen Auslegungsvarianten über das numerische Simulationsprogramm LEWTSim einzeln mit den konkreten Randparametern gerechnet werden müssen.

Tabelle A9 Numerische Simulationsergebnisse; Ergebnisabweichungen als Funktion von Bodenart und Standort bezogen auf einen Standort mit mittleren Basisparametern

Einzelro	hr	Volumenstro	m 1000 m³/h ∅ [DN400 Länge: 6	0 m v _{L,max} :	= 2,21 m/s
Tempe- raturleit- fähigkeit a des Erd-	0,4	10,8 / 9,25 3,62 3491 (2826) 4613 (5581)	10,4 / 8,8 3,48 2884 (2409) 3987 (5102)	10,3 / 9,76 3,44 2338 (2019) 3435 (4763)	K/K kW kWh/h kWh/h	Verlege- tiefe 1,5 m
reichs in 10 ⁻⁶ m ² /s	0,6	12,6 / 10,0 4,24 4690 (3404) 5655 (5809)	10,7 / 9,0 3,6 3388 (2804) 4439 (5417)	11,8 / 10,8 3,96 3157 (2529) 4163 (5010)	K/K kW kWh/h kWh/h	
	0,9	13,8 / 10,5 4,62 5621 (3837) 6433 (6003)	11,53 / 9,7 3,87 4070 (3242) 5000 (5725)	12,7 / 11,5 4,25 3806 (2921) 4711 (5304)	K/K kW kWh/h kWh/h	
		Oberstdorf	Giessen	Köln		
		Muster	standorte der Hei	zperiode	Luftvorv	/ärmung

Tabelle A10 Numerische Simulationsergebnisse; Ergebnisabweichungen als Funktion von Bodenart und Standort bezogen auf einen Standort mit mittleren Basisparametern

Einzelro	hr	Volumenstror	n 1000 m³/h ∅ D	N400 Länge: 10	00 m v _{L,max}	= 2,21 m/s
Tempe- raturleit- fähigkeit a des Erd-	0,4	14,7 / 11,7 4,94 5490 (3540) 6477 (5735)	12,9 / 10,8 4,34 4245 (3095) 5207 (5240)	13,8 / 12,7 4,62 3766 (2716) 4742 (4888)	K/K kW kWh/h kWh/h	Verlege- tiefe 1,5 m
reichs in 10 ⁻⁶ m ² /s	0,6	16,5 / 12,4 5,55 6866 (4018) 7679 (5945)	14,3 / 11,6 4,8 5253 (3548) 6111 (5547)	15,2 / 13,6 5,1 4677 (3126) 5550 (5146)	K/K kW kWh/h kWh/h	
	0,9	17,4 5,86 7744 (4279) 8455 (6094) Oberstdorf	15,2 / 12,2 5,12 5921 (3825) 6702 (5810) Giessen	15,8 / 14,0 5,3 5209 (3292) 6070 (5374) Köln	K/K kW kWh/h kWh/h	
			standorte der Hei		Luftvorw	/ärmung

Tabelle A11 Numerische Simulationsergebnisse; Ergebnisabweichungen als Funktion von Bodenart und Standort bezogen auf einen Standort mit mittleren Basisparametern

Registo	er	Volumenstro	m 1000 m³/h ∅ [DN200 Länge: 3	0 m v _{L,max} :	= 1,77 m/s
Tempe- raturleit- fähigkeit a des Erd-	0,4	12,3 / 9,86 4,12 4160 (2984) 5201 (5466)	11,65 / 9,76 3,91 3285 (2528) 4361 (5041)	11,7 / 10,6 3,93 2825 (2225) 3874 (4682)	K/K kW kWh/h kWh/h	Verlege- tiefe 1,5 m
reichs in 10 ⁻⁶ m ² /s	0,6	11,9 / 11,4 3,98 3500 (2525) 4280 (4624)	11,68 / 11,14 3,92 2747 (2009) 3697 (4316)	11,8 / 12,5 3,95 2554 (1881) 3551 (4211)	K/K kW kWh/h kWh/h	
	0,9	14,4 / 11,0 4,83 5587 (3661) 6358 (5796)	13,5 / 11,1 4,51 4532 (3254) 5391 (5576)	13,4 / 11,84 4,48 3854 (2844) 4729 (5152)	K/K kW kWh/h kWh/h	5 Rohre Abstand: 0,9 m
		Oberstdorf	Giessen	Köln		
		Muster	standorte der Hei	zperiode	Luftvorv	/ärmung

Tabelle 12 Numerische Simulationsergebnisse; Ergebnisabweichungen als Funktion von Bodenart und Standort bezogen auf einen Standort mit mittleren Basisparametern

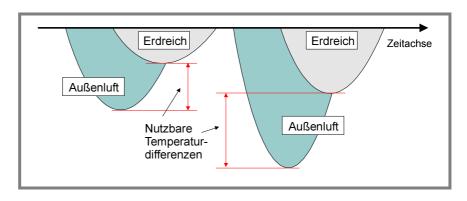
Einzelro	hr	Volumenstror	m 1500 m³/h ∅ D	N500 Länge: 10	00 m v _{L,max}	= 2,12 m/s
Tempe- raturleit- fähigkeit a des Erd-	0,4	11,8 / 9,9 5,96 6060 (3085) 7665 (5640)	11 / 9,5 5,6 4901 (2640) 6508 (5136)	11,2 / 10,6 5,63 4053 (2218) 5668 (4813)	K/K kW kWh/h kWh/h	Verlege- tiefe 1,5 m
reichs in 10 ⁻⁶ m ² /s	0,6	13,4 / 10,5 6,76 7706 (3565) 9119 (5862)	12,4 / 10,3 6,27 6324 (3165) 7769 (5455)	12,5 / 11,5 6,28 5190 (2672) 6672 (5049)	K/K kW kWh/h kWh/h	
	0,9	14,4 / 10,9 7,24 8988 (3958) 10158 (6023)	13,4 / 11,0 6,75 7437 (3556) 8704 (5762)	13,2 / 12,0 6,63 6065 (3004) 7412 (5319)	K/K kW kWh/h kWh/h	
		Oberstdorf Muster	Giessen standorte der Hei	Köln zperiode	Luftvorw	/ärmung
		Muster	standorte der Hei	zperiode	Luftvorw	/ärmung

Tabelle A13 Numerische Simulationsergebnisse; Ergebnisabweichungen als Funktion von Bodenart und Standort bezogen auf einen Standort mit mittleren Basisparametern

Regist	er	Volumenstro	m 1500 m³/h ∅ [DN300 Länge: 3	5 m v _{L,max} :	= 1,18 m/s
Tempe- raturleit- fähigkeit a des Erd-	0,4	10,9 / 9,2 5,5 4786 (2512) 6357 (5123)	10,4 / 9,0 5,25 3710 (1993) 5356 (4671)	10,6 / 10,2 5,34 3338 (1830) 4920 (4387)	K/K kW kWh/h kWh/h	Verlege- tiefe 1,5 m
reichs in 10 ⁻⁶ m ² /s	0,6	12,3 / 9,8 6,2 6071 (2926) 7560 (5486)	11,7 / 9,7 5,87 4763 (2435) 6390 (5077)	11,73 / 10,7 5,91 4227 (2219) 5760 (4710)	K/K kW kWh/h kWh/h	
	0,9	13,3 / 10,2 6,68 7295 (3391) 8592 (5771)	12,4 / 10,2 6,25 5866 (2962) 7294 (5506)	12,4 / 11,0 6,25 5042 (2606) 6456 (5107)	K/K kW kWh/h kWh/h	5 Rohre Abstand: 0,8 m
		Oberstdorf	Giessen	Köln		
		Muster	standorte der Hei	zperiode	Luftvorv	/ärmung

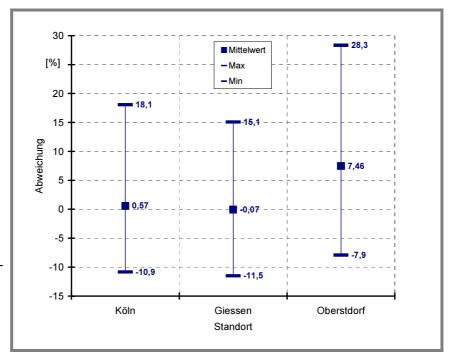
Tabelle 14 Numerische Simulationsergebnisse; Ergebnisabweichungen als Funktion von Bodenart und Standort bezogen auf einen Standort mit mittleren Basisparametern

Einzelro	hr	Volumenstror	n 3000 m³/h ∅ D	N800 Länge: 1	50 m v _{L,max}	= 1,66 m/s
Tempe- raturleit- fähigkeit a des Erd-	0,4	10,4 / 9,27 10,46 10026 (2769) 13557 (5550)	9,7 / 8,9 9,74 8087 (2332) 11572 (5059)	9,92 / 9,83 10 6661 (1939) 10102 (4746)	K/K kW kWh/h kWh/h	Verlege- tiefe 1,5 m
reichs in 10 ⁻⁶ m ² /s	0,6	11,4 / 9,62 11,4 12045 (3149) 15311 (5745)	10,5 / 9,34 10,54 9792 (2706) 13170 (5305)	10,7 / 10,43 10,75 7949 (2225) 11364 (4955)	K/K kW kWh/h kWh/h	
	0,9	12,2 / 9,9 12,25 13492 (3409) 16492 (5870)	11,0 / 10,0 11,1 11127 (2978) 14354 (5571)	11,3 / 11,0 11,37 9047 (2461) 12374 (5181)	K/K kW kWh/h kWh/h	
		Oberstdorf	Giessen	Köln		
		Muster	standorte der Hei	zperiode	Luftvorw	/ärmung


Tabelle 15 Numerische Simulationsergebnisse; Ergebnisabweichungen als Funktion von Bodenart und Standort bezogen auf einen Standort mit mittleren Basisparametern

Regist	er	Volumenstro	om 3000 m³/h Ø	DN250 Länge: 3	35 m v _{L,max}	= 1,7 m/s
Tempe- raturleit- fähigkeit a des Erd-	0,4	10,9 / 9,3 10,94 9473 (2495) 12631 (5100)	10,4 / 9,1 10,46 7361 (1980) 10664 (4654)	10,6 / 10,2 10,7 6623 (1814) 9805 (4372)	K/K kW kWh/h kWh/h	Verlege- tiefe 1,5 m
reichs in 10 ⁻⁶ m ² /s	0,6	12,4 / 9,9 12,45 12143 (2915) 15128 (5453)	11,7 / 9,8 11,82 9553 (2429) 12812 (5059)	11,8 / 10,9 11,9 8494 (2215) 11572 (4691)	K/K kW kWh/h kWh/h	
	0,9	13,4 / 10,4 13,5 14727 (3396) 17305 (5746)	12,6 / 10,4 12,7 11853 (2962) 14714 (5479)	12,6 / 11,21 12,7 10205 (2605) 13057 (5091)	K/K kW kWh/h kWh/h	10 Rohre Abstand: 0,8 m
		Oberstdorf	Giessen	Köln		
		Muster	standorte der Hei	zperiode	Luftvorv	/ärmung

Geht man in der jeweiligen Ergebnismatrix bei der zentralen Position (Giessen; Temperaturleitfähigkeit a = ...) von einem Referenz-Mittelwertergebnis aus, ist die Schwankungsbreite der Abweichungen um diese Konfiguration in Abhängigkeit von der Bodenart und dem Standort von Interesse, da die Bodenkennwerte nie genau bestimmt werden können. Es kann gezeigt werden, dass der Standort innerhalb der Bundesrepublik deutlich weniger Einfluss auf ein Betriebsergebnis hat, als die Bodenzusammensetzung. Für gemäßigte Orte wir Köln oder Giessen kann kein wesentlicher Unterschied heraus-gearbeitet werden. Für Oberstdorf als Ort mit besonders kühlem Winter ergeben sich generell bessere Ergebnisse im Vergleich zu den Vergleichstandorten. Dies liegt im Kern daran, dass die Dämpfung der Amplitude der Bodentemperaturwelle in bezug auf tiefere Umgebungslufttemperaturen größere ausnutzbare Temperaturdifferenzen erzeugt, als an gemäßigteren Standorten (Bilder A3 und A4).


Bild A3

Nutzungspotenzial des L-EWT über Idealisierte Temperaurverläufe von Außenluft und Erdreich an unterschiedlichen meteorologischen Standorten

Bild A4

Mittelwert und maximale Abweichungen der Systemleistungen in Bezug auf die Referenzanlage Giessen bei mittlerer Temperaturleitfähigkeit a (0,6 ...) der Bodenart

Deutlich ausgeprägter, als durch Standorte, sind die Ergebnisunterschiede die sich aufgrund der Bodenzusammensetzung ergeben. In Bild A5 ist zu erkennen, dass eine hohe Temperaturleitfähigkeit zu deutlich besseren Ergebnissen, auch an gemäßigten Standorten geführt.

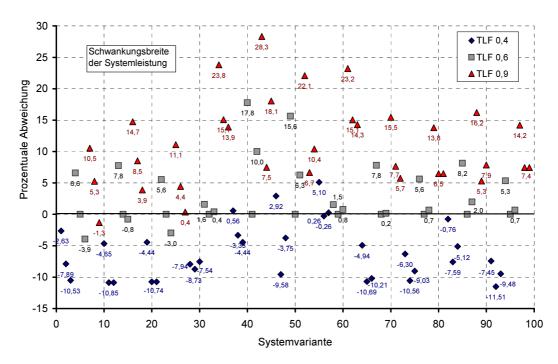
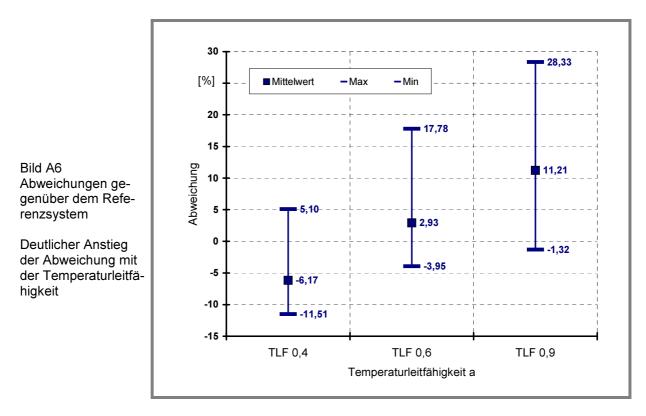
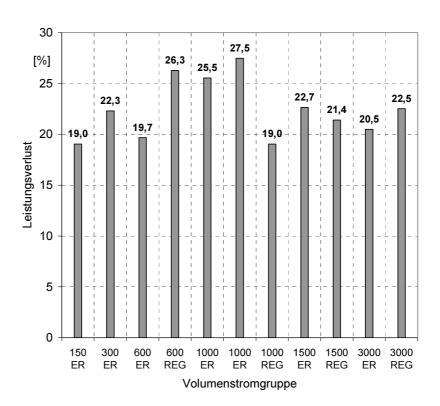



Bild A5 Ergebnisabweichungen als Funktion der Bodenart

Ein "guter" Boden (a hoch) führt auch an wintergemäßigten Orten, wie Köln zu besseren Resultaten, als ein "schlechter" Boden (a niedrig) in Oberstdorf. Der an sich günstigere Standort kann dieses Defizit nicht ausgleichen. Die Mittelwerte der Abweichungen gegenüber dem Referenzsystem steigen deutlich mit der Temperaturleitfähigkeit (Bild A6). Die größten absoluten Abweichungen fallen dennoch (mit 28,33 %) recht moderat aus.

Der hier gezeigte Zusammenhang zwischen Ertragsaussicht und Temperaturleitfähigkeit ist nur auf den ersten Blick offenkundig. Ein durchaus unerwünschter Effekt bei hoher Temperaturleitfähigkeit des Erdbodens ist, dass die Dämpfung der Bodenwelle schwächer ausfällt und damit folglich der ausnutzbare Temperaturhub zwischen Boden und Umgebungsluft.


Ein "günstiger" meteorologischer Standort kann das Systemverhalten bei einen "schlechten" Boden nicht ausgleichen

Aus den bisherigen Erläuterungen könnte sich bei der Auslegung ein bestimmter Fehler ergeben, wenn die Annahmen oder Schätzungen bezüglich des Bodens und des Standortes zugleich falsch getroffen würden. Dies wäre ein Fehler, der sich in der Ergebnismatrix quasi als Diagonale zwischen einem guten Standort mit gutem Boden (Oberstdorf mit einer Bodentemperaturleitfähigkeit von a = 0,9...) und einem Standort mit den entgegengesetzten Eingeschaften ergeben würde (Köln; a = 0,4...).

Bild A7 zeigt die jeweils größten Verluste bezüglich der Systemauslegung und den tatsächlichen Betriebswerten für die dargestellten Volumenstromgruppen für den Fall, dass fälschlicherweise ein zu guter Standort/Boden angenommen wurde. Dieser Fall ist natürlich kritischer zu sehen, als die gegenteilige Annahme, da bei einer Auslegungsgrundlage, die von einem schlechteren Boden/Standort ausgeht, als tatsächlich vorhanden ist, die Betriebsleistung besser sein wird, als erwartet.

Leistungsverluste (in Prozent) bei fehlerhafter Annahme zu günstiger Randbedingungen bezüglich Boden und Standort für die betrachteten Mustervolumenstromgruppen

V1000

V5000

V10000

4 Zusammengefasste Ergebnisse wesentlicher L-EWT-Konfigurationen

Es werden für drei grundlegende Nenn-Volumenströme, basierend auf 168 gezielt durchgeführten Simulationsrechnungen, alle wesentlichen Systemergebnisse im Detail zusammengefasst dargestellt. Dies sind die Volumenstromgruppen V1000, V5000 und V10000.

Je Konfiguration werden 6 Varianten als Funktion der Verlegetiefen 1,5, 3,0 und 4,5m und Temperaturleitfähigkeit a (Leitungsmerkmal der Bodenart) zwischen 0,44·10⁻⁶ (sehr trocken) und 0,93·10⁻⁶ m²/s (gesättigt) gerechnet. Mit den Ergebnissen aus den nachfolgend aufgeführten Tabellen werden Direkteinschätzungen von Betriebseigenschaften dieser oder ähnlicher Planungsvarianten (wie auch mit den dargestellten Simulationsergebnissen der zuvor behandelten Fragestellungen) ermöglicht.

Tabelle 15 Musteranlagen für die Volumenstromgruppe V1000 (Tabelle 18 bis 29)

Zweckmäßige Innendurchmesser Einzelrohr: 0,3 bis 0,5 m Register: 0,15 bis 0,2 m Bezeichnung der Abkürzung:

[Durchmesser_Länge_Typ]

			V 1000
ER	03_30_1	REG	015_20_5
	03_60_1		015_30_5
	03_100_1		02_20_5
	05_30_1		02_30_5
	05_60_1		Register 015: 0,075/0,08/0,1
	05_100_1		Register 02: 0,1/0,105/0,12

Tabelle 16 Musteranlagen für die Volumenstromgruppe V5000 (Tabelle 30 bis 35)

Zweckmäßige Innendurchmesser Einzelrohr: 0,7 bis 1,0 m; Register: 0,3 bis 0,5 m

ER	07_100_1	REG	03_50_5
	07_200_1		03_100_5
	1_100_1		05_50_5
	1_200_1		05_100_5
	Einzelrohr 07: 0,35/0,4/0,5		Register 03: 0,15/0,155/0,16
	Einzelrohr 1: 0,5/0,55/0,6		Register 05: 0,25/0,26/0,27

Tabelle 17Musteranlagen für die Volumenstromgruppe V10000 **(Tabelle 36 bis 45)**

Zweckmäßige Innendurchmesser Einzelrohr: 1,0 bis 1,5 m; Register: 0,5 bis 0,8 m

Reg: 0,5 Abstand: 1,2 m 0,8: Abstand: 1,5 m

ER 1_200_1 REG 05_50_5 1_300_1 05_100_5 15_200_1 05_150_5 15_300_1 08_50_5 Einzelrohr 15: 0,75/0,95/1,0 08_100_5 Register 08: 0,4/0,45/0,5 0.4/0,45/0,5

Tabelle 18 Volumenstromgruppe V1000, System 03_30_1

Volum	Volumenstromgruppe	grupp	e V1000	000		ŏ	03_30_1	dr_Lr_Ro	d _{R_} L _{R_} Rohranzahl:	[-/w/w]	z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vora	Vorabschätzung	zung	4	Haustechn	Haustechnische Ziele	а		CO ₂ -relev	CO ₂ -relevante Ziele		Koste	Kostenrelevante	. Ziele
	Vluft	рЛ	Ý _{mæx} ∕L _{ges}	ω°. ω°.	Ö, ru: Ö, LEWT	Ö	ф, h	°3	ер	βe	QVe	ME	X.	ПP
	s/w		m²/h	X	KW	KWh	Н	-	,	,	KWs/m³	KWh/m	€/m	₩
ı				€'2	2,45	1716	1708	44,92	0,163	18,42	8,23	47,89		1,720
=				5,27	1,77	641	712	32,46	0,182	16,51	5,78	17,48		2,381
7	3,93	6	33,3	6,33	2,12	1069	1053	38,87	0,161	18,61	7,04	29,89	140 50	1,988
4	•			90'5	1,7	843	1117	31,17	0,217	13,84	5,53	22,01) }	2,479
Κ,,				6,33	2,12	719	625	38,87	0,142	21,09	7,04	20,56		1,988
148				90'5	1,7	513	500	31,17	0,159	18,81	5,53	14,37		2,479
						0	03_30_1				€ = Z	3,0 m		
ı				26'2	2,67	2079	1996	48,96	0,157	19,10	9,02	58,41		2,559
=				6,73	2,26	829	913	41,44	0,180	16,65	7,55	22,65		3,024
7	3,93	6	33,3	6,52	2,19	1293	1288	40,16	0,163	18,41	7,30	80'9E	97 700	3,120
4				5,23	1,76	88	1204	32,27	0,201	14,92	5,75	26,10	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	3,883
Κ,				6,52	2,19	918	763	40,16	0,136	22,06	7,30	26,44		3,120
1/18				5,23	1,76	670	639	32,27	0,156	19,23	5,75	18,85		3,883
						0	03_30_1				z = 4	4,5 m		
ı				8,44	2,83	2470	2290	51,89	0,152	19,78	09'6	69,84		3,438
=				7,03	2,36	901	981	43,27	0,178	16,84	7,91	24,68		4,123
×	3,93	9	33,3	6,93	2,33	1460	1330	42,72	0,149	20,13	7,80	41,41	324.33	4,176
-				5,4	1,81	1007	1193	33,19	0,194	15,48	5,93	27,06	<u>}</u>	5,376
Υ				6,63	2,33	1097	873	42,72	0,130	23,04	7,80	31,81		4,176
2				5,4	1.80	724	883	33,19	0,154	19,44	5,93	20,41		5,376

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10 m²/s (erster Wert im Feld) und 0,44 ·10 m²/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

 Tabelle 19
 Volumenstromgruppe V1000, System 03_60_1

Volum	Volumenstromgruppe	grupp	e V1000	000		ŏ	03_60_1	d _{R_} L _{R_} Rohranzahl:		[-/w/w]	Z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vora	Vorabschätzung	Bunz.	4	łaustechn	Haustechnische Ziele	e))	CO ₂ -relevante Ziele	ante Ziele		Koster	Kostenrelevante	Ziele
	√luft	2	Ý _{mæx} ∕L _{ges}	∆9 ^w °	Ö, FU.)	ď	t _{b,h}	ຜ້	9,	ಹಿ	3∧0	ME	K.	4
	s/w		m²/h	¥	KW	KWh	I	,			KWs/m³	kivihim	€/m	€W
ı				11,85	3,98	4209	3299	63,40	0,148	20,32	13,65	62'69		2.069
=				0'6	3,02	2366	2145	48,11	0,171	17,57	10,19	32,70		2.727
7	3,93	200	16,67	28'6	3,31	1811	1226	52,73	0,127	23,53	11,24	26,34	137.24	2.488
				8,15	2,73	1537	1286	43,49	0,158	19,04	9,15	21,58	t 4:	3.016
Υ,				28'6	3,31	1235	629	52,73	880'0	33,98	11,24	18,77		2.488
87				8,15	2,73	1056	744	43,49	0,133	22,61	9,15	15,26		3.016
						0	03_60_1				z = 3	z = 3,0 m		
ı				12,9	4,33	4689	3361	26'89	0,135	22,22	14,91	09' 29		3.056
=				10,1	933 933	2786	2403	54,00	0,162	18,47	11,53	88'88'		3.904
7	3,93	200	16,67	10,07	86,E	2255	1535	53,84	0,128	23,40	11,49	32,77	220 56	3.915
۷				8,54	2,87	1855	1456	45,72	0,148	20,29	9,65	26,35	00.027	4.611
χ,				10,07	86'E	1606	941	53,84	0,110	27,19	11,49	23,81		3.915
81				8,54	2,87	1320	875	45,72	0,125	24,03	9'65	19,25		4.611
						0	03_60_1				z = 4,5	m 9'		
ı				13,75	4,62	5223	3461	73,59	0,125	24,04	15,95	76,19		4,061
=				10,6	3,55	2973	2515	56,55	0,159	18,83	12,10	41,66		5,285
7	3,93	200	16,67	10,9	3,66	2646	1703	0E'89	0,121	24,75	12,50	38,75	312.71	5,126
<u>-</u>				8,87	2,97	1932	1472	47,31	0,143	20,91	10,01	27,58	- 1	6,317
X				10,9	3,66	1891	1020	0E'89	0,102	29,53	12,50	28,32		5,126
» 7				8,87	2,97	1411	908	47,31	0,121	24,75	10,01	20,67		6,317

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10 am/3s (erster Wert im Feld) und 0,44 ·10 am/3s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 20Volumenstromgruppe V1000, System 05_30_1

Volum	Volumenstromgruppe	ıgrupp		V1000		ŏ	05_30_1	dR_LR_Ro	d _{R_} L _{R_} Rohranzahl: [m/m/-]	[-/w/w]	z = 1	1,5 m	Betrie	Betriebsart B¹
	Vora	Vorabschätzung	zung.	4	laustechn	Haustechnische Ziele	g)		CO ₂ -relev	CO ₂ -relevante Ziele	í	Kostei	Kostenrelevante	g Ziele
	Ψηγ	РЛ	Ý _{mæc} ∕L _{ges}	A9™°	Ġ ^{ru} ,	ď	ս'գլ	3	ер	ಜ್ಞ	QVe	ME	Kares	Ы
	s/w		m²/h	¥	KW	KWh	н	-	-	'	KWs/m³	KWh/m	€/m	₩
ı				7,1	2,38	1638	1644	59'05	0,141	21,20	90'8	46,87		2.814
-				29'5	<u>د</u> و	208	88	40,43	0,154	19,52	6,33	22,76		3.525
7	1,42	8	33,3	6,1	2,04	1020	1042	43,41	0,144	20,83	6,84	29,10	72 27	3.283
				5,15	1,73	879	1122	36,82	0,180	16,67	5,72	24,03	7.027	3.872
K,				6,1	2,04	9/9	603	43,41	0,126	23,86	6,84	19,70		3.283
148				5,15	1,73	550	536	36,82	0,137	21,84	5,72	15,81		3.872
						0	05_30_1				€ = Z	3,0 m		
ı				2,75	2,6	2030	1967	55,33	0,137	21,96	8,85	58,42		3.780
=				5,5	2,17	1042	1112	46,18	0,150	19,94	7,30	29,51		4.529
7	1,42	8	33,3	6,24	2,1	1234	1261	44,69	0,144	20,83	7,05	35,21	327.62	4.680
۷ .				5,4	1,8	1034	1211	38,52	0,165	18,17	6,01	28,78	20. 720	5.430
χ,				6,24	2,1	88	752	44,69	0,120	24,90	7,05	25,80		4.680
- 18				5,4	1,81	718	674	38,52	0,132	22,67	6,01	20,77		5.430
						0	05_30_1				z = 4	4,5 m		
ı				8,25	2,77	2443	2286	96'89	0,132	22,74	9,46	69'02		4.798
-				82'9	2,28	1132	1193	48,52	0,149	20,19	7,70	32,13		5.829
Х	1,42	8	33,3	89'9	2,24	1404	1308	47,67	0,131	22,84	95' 2	40,65	443.03	5.933
<u> </u>				9'5	1,88	1064	1194	40,01	0,158	18,96	6,26	29,86)	7.070
К				89'9	2,24	1065	0/8	47,67	0,115	26,05	95' /	31,41		5.933
ρ lα				5,6	1,88	781	722	40,01	0,130	23,02	6,26	22,64		7.070

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10⁻⁶ m²/ys (erster Wert im Feld) und 0,44 ·10⁻⁶ m²/ys Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 21Volumenstromgruppe V1000, System 05_60_1

Volum	Volumenstromgruppe	ngrupp		V1000		ő	05_60_1	dR_LR_Ro	dk_Lk_Rohranzahl:	[-/m/m]	z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vor	Vorabschätzung	tzung		laustechn	Haustechnische Ziele	a		CO ₂ -relev	CO ₂ -relevante Ziele		Kostei	Kostenrelevante	: Ziele
	√luft	3	V _{max} ∕L _{ges}	∆9m°	Ó, ru:	ď	ď.ď	ຶ້ນ	9,	βe	ď٧	ME	Z,	4
	s/w		m²/h	¥	KW	KWh	н		,	,	KWs/m³	kWh/m	€/m	€WV
ı				11,6	6'6	4128	3281	81,71	0,114	26,36	13,52	26'09		3,375
=				96	3,21	1642	2319	67,25	0,202	14,83	11,04	21,83		4,100
7	1,42	120	16,67	9,54	3,2	1752	1226	67,04	0,100	29,94	11,00	26,27	219.38	4,113
۷				8,22	2,76	1580	1299	57,82	0,118	25,48	9,42	23,23	0.00	4,769
χ,				9,54	3,2	1193	952	67,04	0,091	33,06	11,00	18,08		4,113
248				8,22	2,76	1091	768	57,82	0,101	29,76	9,42	16,35		4,769
						0	05_60_1				E = Z	3,0 m		
ı				12,61	4,23	4646	3373	88,62	0,104	28,86	14,71	86,88		4,525
=				10,45	3,51	3137	2586	73,54	0,118	25,41	12,12	46,11		5,453
7	1,42	120	16,67	9,72	3,26	2194	1533	08,30	0,100	29,98	11,22	32,91	318 98	5,871
_				8,74	2,93	1921	1462	61,39	0,109	27,53	10,03	28,53)	6,532
; Y				9,72	3,26	1566	942	06,88	980'0	34,83	11,22	23,85		5,871
81				8,74	2,93	1389	907	61,39	0,094	32,08	10,03	20,99		6,532
						0	05_60_1				Z = 4	4,5 m		
ı				13,47	4,52	5191	3470	94,70	960'0	31,34	15,76	78,24		2'69'5
=				10,83	3,63	3361	2713	76,05	0,116	25,95	12,55	49,54		7,093
7	1,42	128	16,67	10,59	3,55	2587	1703	74,37	0,094	31,83	12,26	39,05	429 14	7,253
<u>-</u>				9,12	3,06	2019	1490	64,11	0,106	28,39	10,50	30'08		8,415
K				10,59	99'E	1856	1025	74,37	6/0'0	37,94	12,26	28,49		7,253
8 -				9,12	3,06	1500	951	64,11	0,091	33,05	10,50	22,73		8,415

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10° m²/s (erster Wert im Feld) und 0,44 ·10° m²/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

 Tabelle 22
 Volumenstromgruppe V1000, System 03_100_1

Volum	Volumenstromgruppe	ngrupp	e V1000	000		03	03_100_1	dr_Lr_Ro	d _{R_} L _{R_} Rohranzahl: [m/m/-]	[-/m/m]	Z = 1	1,5 m	Betrie	Betriebsart B¹
	Vora	Vorabschätzung	zung.	_	laustechn	Haustechnische Ziele	9		CO ₂ -relevante Ziele	ante Ziele		Kostei	Kostenrelevante Ziele	: Ziele
	Ψηγ	рЛ	Ý _{mæx} ∕L _{ges}	LM1 G∀	C) PW T		ф.	3	9	βe	۵۷°	∃W	Karis	LP
	s/w	-	m²/h	×	KW	KWh	I	,	,		KWs/m³	KWh/m	€/m	₩
ı				15,6	5,22	6049	3842	70,74	0,141	21,33	18,00	51,98		2.604
=				12,5	4,2	4048	3010	56,91	0,165	18,22	14,32	33,82		3.237
7	3,93	333,3	2	12,4	4,15	2292	1248	56,24	0,121	24,89	14,14	20,16	135.93	3.276
۷				10,6	3,56	2128	1387	48,24	0,144	20,79	12,02	18,21		3.818
χ.				12,36	4,15	1574	784	56,24	0,110	27,21	14,14	14,00		3.276
81/1				10,6	3,56	1476	839	48,24	0,126	23,84	12,02	12,90		3.818
						ŏ	03_100_1				S = 3	3,0 m		
٦				16,8	5,65	6771	3862	99'92	0,126	23,76	19,54	59,16		3.853
=				13,7	4,61	4676	3191	62,47	0,151	19,86	15,80	39,70		4.722
7	3,93	333,3	0	12,6	4,23	3042	1731	57,32	0,126	23,81	14,43	26,59	217.67	5.146
۷				11,33	89. C	2640	1625	51,49	0,136	22,01	12,88	22,80	, ,	5.728
, X				12,6	4,23	2114	1005	57,32	0,105	28,50	14,43	18,92		5.146
81/-				11,33	3,8	1878	980	51,49	0,116	25,97	12,88	16,61		5.728
						8	03_100_1				z = 4	4,5 m		
ı				18,05	90'9	7491	3826	82,12	0,115	26,19	21,02	EE'99		5.084
=				14,2	4,77	4931	3257	64,64	0,146	20,52	16,38	42,10		6.458
7	86°E	333,3	0	13,85	4,65	3717	2052	63,01	0,122	24,55	15,94	32,63	308.06	6.625
<u> </u>				11,84	3,97	2782	1667	53,80	0,133	22,61	13,50	24,13		7.760
, X				13,85	4,65	2419	1042	63,01	960'0	31,46	15,94	21,88		6.625
» -				11,84	3,97	2018	1011	93,80	0,111	27,05	13,50	17,94		7.760

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10 m/s (erster Wert im Feld) und 0,44 ·10 m/s/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

 Tabelle 23
 Volumenstromgruppe V1000, System 05_100_1

Volum	Volumenstromgruppe	grupp	• V1000	000		905	05_100_1	dR_LR_Rol	d _{R_} L _{R_} Rohranzahl:	[-/m/m]	Z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vors	Vorabschätzung	Bunz		laustechn	Haustechnische Ziele	au		CO ₂ -relevante Ziele	ante Ziele		Kostei	Kostenrelevante	: Ziele
	Vluft	<u>8</u>	V _{max} ∕L _{ges}	∆9rus Limit	Ö'u»	ď	đ, đ	ຜ້	of.	ಸ್ತ	'n	ME	Ž,	<u></u>
	m/s	-	m²/h	У	MM	KWN	т	-	-	-	KWs/m³	KWh/m	€/m	€MV
Н				15,3	5,14	5982	3846	105,64	0,094	31,97	17,98	54,21		4,238
•				13,2	4,42	4391	3161	90,84	0,105	28,55	15,39	39,30		4,928
Х	1,42	200	0	12,07	4,05	2238	1248	83,24	0,081	98'98	14,05	20,56	217.82	5,378
4				10,75	3,61	2183	1421	74,19	960'0	31,57	12,47	19,76		6,034
K.,				12,07	4,05	1539	784	83,24	0,074	40,34	14,05	14,25		5,378
1 18				10,75	3,61	1506	852	74,19	0,083	36,33	12,47	13,82		6,034
						ò	05_100_1			: Z	= 3,0 m			
ı				16,6	95'5	6725	3874	114,27	0,084	35,68	19,49	61,60		5,675
=				14,5	4,87	5118	3335	100,09	960'0	31,54	17,01	46,31		6,479
Х	1,42	200	0	12,36	4,15	2990	1734	85,29	980'0	35,44	14,41	27,37	315.52	7,603
_				11,6	6 6	2751	1673	80,15	680'0	33,79	13,51	25,07	0	8,090
K.				12,36	4,15	2079	1007	85,29	0,071	42,43	14,41	19,32		7,603
<u>»</u>				11,6	3,9	1956	1002	80,15	0,075	40,12	13,51	18,10		8,090
						ŏ	05_100_1			. Z	= 4,5 m			
Н				8'21	26'9	7457	3885	122,69	920'0	39,45	20'62	06'89		6,861
•				15,0	5,04	5409	3398	103,58	0,092	32,71	17,62	49,13		8,128
Х	1,42	200	0	13,6	75,4	3672	2057	93,92	0,082	69'96	15,93	33,72	409.63	8,963
<u> </u>				12,15	4,08	2935	1745	83,85	280'0	34,57	14,16	26,80	2	10,040
K.				13,6	75,4	2451	1042	93,92	0,062	48,34	15,93	22,99		8,963
8 -				12,15	4,08	2112	1029	83,85	0,071	42,18	14,16	19,62		10,040

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10° m/9s (erster Wert im Feld) und 0,44 ·10° m/9s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 24Volumenstromgruppe V1000, System 015_20_5

Vorabschätzung Nutt Ud Vmæ./Læe ∆95m m/s - m²/h K 10, 8,3,14 133,3 10 9,0 7,5/8 8 3,14 133,3 10 9,0 7,7/8 8 12,0	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\					TIME TO THE	dr_Lr_Kohranzahl: [m/m/-]	Z = 1	1,5 m	Betrie	Betriebsart B¹
3,14 133,3 10		Haustechnische Ziele	he Ziele		CO ₂ -rele	CO ₂ -relevante Ziele	в	Ϋ́	Kostenrelevante Ziele	ante Ziele	
3,14 133,3 10	×	Ó.W.	ď	d, d	ພ້	9	ಸ್ತ	۵۷°	ME	K	LP
3,14 133,3 10		ΚW	KWh	I		-		KWs/m³	kWh/m	€/m	€MV
3,14 133,3 10		3,6	3077	2539	56,10	0,159	18,89	12,27	25,88		2.157
3,14 133,3 10	8,37	2,81	1741	1585	43,79	0,175	17,12	9,42	14,36		2.764
3,14 133,3 10	9,04	3,03	1640	1197	47,22	0,141	21,35	10,22	14,10	77 66	2.563
3,14 133,3 10	7,51	2,52	1359	1256	39,27	0,178	16,86	Ж 8	11,17	3	3.082
3,14 133,3 10	9,04	3,03	1093	733	47,22	0,129	23,24	10,22	9,52		2.563
3,14 133,3 10	7,51	2,52	905	693	39,27	0,147	20,35	8,38	7,72		3.082
3,14 133,3 10			0	015_20_5				S = Z	3,0 m		
3,14 133,3	11,35	3,81	3158	2458	86,83	0,150	20,02	13,02	26,85		3.799
3,14 133,3 10	9,4	3,15	1806	1566	49,09	0,167	17,97	10,65	15,05		4.595
	0'6	3,02	1812	1422	47,06	0,151	19,86	10,18	15,38	144.76	4.793
12 12 12 12 12 12 12 12	9/'2	2,6	1508	1347	40,52	0,172	17,45	29'8	12,49	·	5.568
7.7	0'6	3,02	1269	847	47,06	0,128	23,35	10,18	11,06		4.793
12	92'2	2,6	1054	775	40,52	0,142	21,19	29'8	90'6		5.568
12			0	015_20_5				Z = 4	4,5 m		
66 6	12,0	4,03	3546	2648	62,81	0,144	20,87	13,82	96,06		5.196
, , , , ,	8 6	3,3	1910	1654	51,43	0,167	18,00	11,19	15,92		6.345
70'0 01 5'551 11'0 X	9,32	3,13	2060	1496	48,78	0,140	21,46	10,58	17,72	209 38	6.690
	92'2	2,6	1541	1336	40,52	0,167	17,98	29'8	12,84	0	8.053
K 9,32	9,32	3,13	1484	931	48,78	0,121	24,84	10,58	13,05		6.690
	9/'2	2,6	1124	810	40,52	0,139	21,63	29'8	89'6		8.053

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10° m3/s (erster Wert im Feld) und 0,44 ·10° m3/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste Abstand: 0,8 m/6015

Tabelle 25 Volumenstromgruppe V1000, System 015_30_5

Volum	Volumenstromgruppe	ıgrupp	e V1000	000		01	015_30_5	dR_LR_R0	dR_LR_Rohranzahl:	[-/w/w]	z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vora	Vorabschätzung	gunz	4	laustechn	Haustechnische Ziele	a)		CO ₂ -relevante	ante Ziele	í	Kostei	Kostenrelevante	e Ziele
	Ψηγ	рЛ	Ý _{mær} ∕L _{ges}	wan em-€∇	Ó, w.	*****O	ч' q	3	eр	β	QV.	∃W	5'7 18 Y	d٦
	s/w	,	m²/h	¥	KW	KWh	ェ	,	,	,	KWs/m³	KWh/m	€/m	₩
ı				13,44	4,51	4454	3197	65,82	0,148	20,33	15,50	25,31		2,503
=				10,9	3,68	2751	2163	53,71	0,162	18,56	12,51	15,38		3,068
7	3,144	200	29'9	11,12	3,73	2058	1241	54,44	0,124	24,20	12,69	12,02	75.26	3,026
_				9'6	3,22	1805	1348	46,99	0,154	19,54	10,85	10,19	2	3,506
ξ,				11,12	3,73	1382	773	54,44	0,115	26,09	12,69	8,15		3,026
8/-				9'6	3,22	1204	292	46,99	0,131	22,91	10,85	86'9		3,506
						,0	015_30_5				€ = Z	3,0 m		
ı				14,63	4,91	4746	3124	71,66	0,135	22,17	16,94	27,36		4,260
=				11,7	3,93	2902	2173	92'29	0,154	19,49	13,41	16,37		5,322
7	3,144	200	29'9	11,27	3,78	2408	1552	55,17	0,132	22,64	12,87	13,93	139.44	5,533
				9,81	3,29	2036	1466	48,02	0,148	20,27	11,10	11,56	t.	6,357
χ.				11,27	3,78	1669	823	55,17	0,101	29,60	12,87	10,00		5,533
81.1				9,81	3,29	1426	867	48,02	0,125	24,00	11,10	8,32		6,357
						Ò	015_30_5				z = 4	4,5 m		
ı				15,3	5,14	5128	3221	75,02	0,129	23,24	17,76	29,77		5,873
=				12,06	4,05	3031	2235	59,11	0,152	19,79	13,84	17,14		7,454
\prec	3,144	700	29'9	11,6	9,9	2723	1663	26'95	0,126	23,90	13,30	15,87	20176	7,741
<u> </u>				6'6	3,32	2091	1459	48,45	0,143	20,92	11,21	11,94) L	9,093
X				11,6	9,9	1929	866	26'95	0,106	28,21	13,30	11,49		7,741
» /-				6'6	3,32	1528	906	48,45	0,122	24,61	11,21	96'8		9,093

Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste Abstand 0,8m/G15_07 bis 11 Meteorologischer Standort Giessen, Bodenart a=0,92 :10 ** m3/s (erster Wert im Feld) und 0,44 :10 ** m3/s

Tabelle 26Volumenstromgruppe V1000, System 02_20_5

Volum	Volumenstromgruppe	grupp	• V1000	000		8	02_20_5	dr_Lr_Rol	dr_Lr_Rohranzahl:	[-/m/m]	z = 1	æ,	Betrie	Betriebsart B ¹
	Vora	Vorabschätzung	zung		laustechn	Haustechnische Ziele	0)		CO ₂ -relev	CO ₂ -relevante Ziele		Koste	Kostenrelevante	e Ziele
	Vluft	<u>P</u>	V _{max} ∕L _{ges}	∆9°w, umr	Ó ^{ru} , Lim	Ö	ф,h	33	ďa	βe	۵۷,	ME	K	П
	s/w		m²/h	X	KW	KWh	I	-	-	,	KWs/m³	KWh/m	€/m	₩
П				10,62	95'8	3070	2548	61,66	0,144	20,87	12,19	26,29		2,304
=				8,57	2,87	1812	1632	49,71	0,156	19,23	9,71	15,29		2,857
7	1,77	9	0	88'8	2,98	1610	1195	51,62	0,129	23,34	10,10	14,03	82.03	2,752
4				9'2	2,54	1361	1252	44,00	0,159	18,83	8,52	11,44	0	3,229
κ,				88'8	2,98	1075	734	51,62	0,118	25,37	10,10	9,48		2,752
1.18				7,6	2,54	206	695	44,00	0,133	22,61	8,52	78,7		3,229
						0	02_20_5				S = Z	3,0 m		
ı				11,28	3,8	3167	2474	65,82	0,135	22,17	13,06	27,39		3,847
=				9,2	3,08	1888	1614	53,35	0,148	20,26	10,46	16,08		4,746
7	1,77	9	0	98'8	2,97	1788	1427	51,45	0,138	21,70	10,07	15,41	146 19	4,922
4				7,75	2,6	1519	1345	45,04	0,153	19,56	8,74	12,86) 	5,623
, K				98'8	2,97	1249	844	51,45	0,117	25,63	10,07	11,03		4,922
81/-1				7,75	2,6	1064	780	45,04	0,127	23,63	8,74	9,29		5,623
						0	02_20_5				z = 4	4,5 m		
ī				11,96	4,0	3577	2678	69'59	0,130	23,14	13,78	31,13		5,200
=				9,61	3,23	1986	1686	S6'S5	0,147	20,40	11,00	16,94		6,440
7	1,77	9	0	9,18	3,08	2033	1489	92'83	0,127	23,65	10,46	17,75	208.01	6,753
<u> </u>				7,76	2,6	1553	1330	45,04	0,148	20,23	8,74	13,23) } }	8,000
K				9,18	80'E	1471	934	9E'E9	0'110	27,28	10,46	13,09		652'9
87				7,76,	2,6	1146	828	45,04	0,125	23,97	8,74	10,03		8,000
					,									

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10° m²/s (erster Wert im Feld) und 0,44 ·10° m²/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 27Volumenstromgruppe V1000, System 02_30_5

Volum	Volumenstromgruppe	ddnubu	e V1000	000		0	02 30 5	de Le Ro	de Le Rohranzahl:	[m/m/-]	z = 1	1.5 m	Betric	Betriebsart B1
	Vorã	Vorabschätzung	gunz		Haustechnische	17	m	1	CO ₂ -relev	CO ₂ -relevante Ziele		Koste	Kostenrelevante	Ziele
	Vluft	3	V _{max} ∕L _{ges}	∆9"°°	O."	ď	t, đ	ພ້	ಹಿ	ಜಿ	'n	ME	X.	-H
	s/w		m²/h	X	KW	kwh	ェ	,	,	,	KWs/m³	kwhm	€/m	₩
٦				13,37	4,49	4464	3224	26,37	0,127	23,55	15,53	25,97		2.686
				11,2	3,76	2830	2199	63,95	0,137	21,89	12,90	16,28		3.208
7	1,77	150	29'9	11,0	3,68	2030	1243	62,59	0,108	27,78	12,61	12,07	80.41	3.278
۷				9,64	3,24	1806	1347	55,11	0,132	22,80	11,03	10,46	÷	3.723
χ.				11,0	3,68	1365	27.2	62,59	0,100	29,96	12,61	8,19		3.278
2				9,64	3,24	1207	773	55,11	0,113	26,56	11,03	7,14		3.723
						0	02_30_5				S = Z	3,0 m		
				14,3	4,8	4603	3679	81,64	0,141	21,28	16,65	26,36		4.458
				11,96	4,0	3010	2226	E0'89	0,130	23,00	13,77	17,45		5.349
7	1,77	150	29'9	10,92	3,67	2312	1526	62,42	0,116	25,77	12,58	13,62	142 65	5.830
				86	6,6	2052	1472	56,13	0,127	23,71	11,25	11,95	000	6.484
, K				10,92	3,67	1618	918	62,42	0,100	29,98	12,58	9,71		5.830
81.				8'6	3,3	1440	874	56,13	0,107	28,02	11,25	8,57		6.484
						0	02_30_5				z = 4	4,5 m		
٦				15,3	5,12	5174	3255	80'28	0,111	27,03	17,80	29'08		5.935
=				12,3	4,14	3163	2309	70,41	0,129	23,30	14,27	18,37		7.340
7	1,77	150	29'9	11,48	3,88	2706	1666	65,48	0,109	27,63	13,23	16,08	202 59	7.893
				9,92	3,33	2111	1463	56,64	0,122	24,54	11,35	12,35		9.126
, S				11,48	3,85	1920	1002	65,48	0,092	32,59	13,23	11,62		7.893
2				9,92	3,33	1548	915	56,64	0,104	28,77	11,35	9,24		9.126
			ا : ا	`` .	40,00				٠ ب					

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10⁻⁶ m²/s (erster Wert im Feld) und 0,44 ·10⁻⁶ m²/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

 Tabelle 28
 Volumenstromgruppe V5000, System 07_100_1

Volum	Volumenstromgruppe	ngrupp		V5000		.00	1_001_70	dr_Lr_Ro	d _{R_} L _{R_} Rohranzahl:	[-/w/w]	Z = 1	1,5 m	Betrie	Betriebsart B¹
	Vora	Vorabschätzung	zung	4	Haustechn	Haustechnische Ziele	٥		CO ₂ -relev	CO ₂ -relevante Ziele		Kostel	Kostenrelevante	: Ziele
	Vluft	Р/П	V _{max} ∕L _{ues}	∆9 ^w °	Ó ^{NU)}	O	t, d	3	ер	βe	QVe	ЭM	Karis	LP
	s/w		m³/h	×	KW	KWh	н	-	-	-	KWs/m³	KWh/m	€/m	€W
П				80'9	10,2	6234	1306	36,48	0,176	17,07	6,74	82'19		2,949
=				96'5	10,0	3062	684	32'58	0,187	16,01	09'9	24,88		3,008
7	3,61	143	옶	85,8	11,04	5479	1040	39,48	0,159	18,84	7,34	46,07	300.76	2,724
				5,48	9,2	4543	1149	32,90	0,212	14,14	6,02	35,79	0	3,269
, ,				85,9	11,04	3726	209	39,48	0,137	21,95	7,34	32,17		2,724
1.48				5,48	9,2	2934	542	32,90	0,155	19,36	6,02	24,79		3,269
						0	07_100_1				€ = Z	3,0 m		
٦				7,55	12,7	6602	1367	45,42	0,174	17,27	8,54	54,55		3,351
=				2'2	12,9	3459	765	46,13	0,186	16,17	89'8	28,17		3,299
7	3,61	143	G G	6,75	11,3	6524	1316	40,41	0,169	17,73	7,53	54,20	425 59	3,766
				5,63	9,45	5290	1268	33,79	0,201	14,92	6,20	42,26	000	4,504
χ.				6,75	11,3	4504	722	40,41	0,134	22,31	7,53	86'88		3,766
1.48				5,63	9,45	3609	653	33,79	0,152	19,76	6,20	30,61		4,504
						0	07_100_1				z = 4	4,5 m		
ı				95'8	14,36	7671	1577	51,35	0,172	17,40	9,74	63,48		3,806
=				8,1	13,54	3694	208	48,42	0,183	16,37	9,14	30,17		4,036
7	3,61	143	S	58'9	11,5	7172	1358	41,13	0,159	18,89	2,68	EE'09	546 53	4,752
<u>-</u>				5,69	9,55	5387	1253	34,15	0,195	15,37	6,27	43,36)	5,723
, X				98,9	11,5	5059	785	41,13	0,130	23,05	89'2	44,00		4,752
» -				5,69	9,55	3803	2/29	34,15	0,149	20,09	6,27	32,35		5,723

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10° m3/s (erster Wert im Feld) und 0,44 ·10° m3/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 29Volumenstromgruppe V1000, System 07_200_1

Volum	Volumenstromgruppe	grupp	e V5000	900		0	07_200_1	dR_LR_Ro	de_Le_Rohranzahl:	[-/w/w]	z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vora	Vorabschätzung	gunz	†	laustechn	Haustechnische Ziele			CO ₂ -relev	CO ₂ -relevante Ziele		Koste	Kostenrelevante	Ziele
	Vluft	3	V _{max} Ages	∆9°°°	O, w.	ď	t, đ.	టి	a _r	ಸ್ತ	ņ	ME	Z,	<u>-</u>
	s/w		m³/h	×	KW	kwh	I	,	'	,	KWs/m³	kwhm	€/m	€W
ı				10,0	16,83	15903	2666	51,38	0,165	18,21	11,41	66,42		3,704
Ε				9'8	14,42	10684	1949	44,02	0,179	16,74	29'6	43,84		4,323
7	3,61	285	22	2'6	16,3	8755	1163	49,76	0,131	22,98	11,03	38,06	311.67	3,824
۷				8,61	14,45	8031	1289	44,12	0,158	19,02	9,70	33,82	<u>.</u>	4,314
κ.				2'6	16,3	6015	719	49,76	0,117	25,54	11,03	26,54		3,824
85				8,61	14,45	5524	731	44,12	0,130	23,07	9,70	24,03		4,314
						0	07_200_1				S = Z	3,0 m		
				10,85	18,21	17160	2762	95,60	0,158	18,97	12,40	72,23		4,530
=				11,1	18,62	12227	2178	S6,85	0,175	17,14	12,70	50,43		4,430
7	3,61	285	22	10,0	16,8	10543	1456	51,29	0,136	22,11	11,39	45,56	412.48	4,910
				6 8	14,92	9581	1466	45,55	0,150	19,95	10,03	40,70	t.	5,529
Κ.				10,0	16,8	7460	872	51,29	0,115	26,12	11,39	33,02		4,910
81/-				6'8	14,92	6720	851	45,55	0,124	24,11	10,03	29,42		5,529
						07	_200_1				z = 4	4,5 m		
٦				11,78	19,8	19031	2925	60,45	0,151	19,86	13,55	82'08		5,435
=				11,63	19,52	13079	2295	65,63	0,172	17,40	13,35	54,12		5,513
7	3,61	285	22	10,25	17,2	11858	1546	52,51	0,128	23,42	11,68	51,69	538 10	6,257
<u>-</u>				6,3	15,32	9913	1478	46,77	0,147	20,48	10,32	42,30) - - -	7,025
X				10,25	17,2	8447	936	52,51	0,109	27,55	11,68	37,64		6,257
				9,13	15,32	7085	872	46,77	0,121	24,81	10,32	31,14		7,025
 -														

Meteorologischer Standort Giessen, Bodenart a=0,92 :10 m3/s (erster Wert im Feld) und 0,44 :10 m3/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

 Tabelle 30
 Volumenstromgruppe V5000, System 1_100_1

Volum	Volumenstromgruppe	ngrupp	e V5000	000		1	1_100_1	dr_Lr_Ro	d _{R_} L _{R_} Rohranzahl: [m/m/-]	[-/w/w]	Z = 1	1,5 m	Betrie	Betriebsart B¹
	Vora	Vorabschätzung	tzung	Т	laustechn	Haustechnische Ziele	ى		CO ₂ -relevante Ziele	ante Ziele		Kostei	Kostenrelevante	g Ziele
	ΨnIA	р/П	V _{max} ∕L _{ues}	~~6∇	Ġ ^{w.}	O	Ть,	3	е	βe	,VD	∃W	Karis	LP
	s/w		m³/h	У	KW	KWh	Н	-	-	-	KWs/m³	KWh/m	€/m	€W
ı				9'9	9,21	4997	1082	38,44	0,156	19,28	6,11	42,19		5,392
=				92'5	99'6	3050	682	40,32	0,161	18,67	6,44	25,60		5,141
7	1,77	6	8	6,12	10,27	5002	1021	42,87	0,147	20,45	88'9	42,68	496 59	4,835
4				5,46	9,16	4571	1149	38,23	0,181	16,60	80'9	37,45	0	5,421
χ,				6,12	10,27	3367	6/9	42,87	0,124	24,27	88'9	29,51		4,835
85.				5,46	9,16	2999	561	38,23	0,134	22,31	80'9	25,96		5,421
						1	_1001_				E = Z	3,0 m		
				7,1	11,84	5183	1106	49,42	0,153	19,56	8,01	43,88		5,312
=				7,45	12,51	3487	772	52,22	0,159	18,85	8,49	29,32		5,028
7	1,77	9	<u>유</u>	6,3	10,56	5947	1287	44,08	0,156	19,29	7,09	50,22	628 97	956'5
				5,64	9,47	5341	1262	39,53	0,170	17,66	6,30	44,34	5,020	6,642
, ,				6,3	10,56	4056	683	44,08	0,121	24,79	7,09	35,65		956'5
1/18				5,64	9,47	3664	662	39,53	0,130	23,10	6,30	31,88		6,642
						1	_1001_				z = 4	4,5 m		
ı				0'8	13,43	0909	1287	90'99	0,153	19,65	9,15	51,35		5,828
=				8'2	13,13	3773	826	54,80	0,157	19,07	8,94	31,79		5,962
7	1,77	6	옶	8E'9	10,71	6554	1328	44,70	0,146	20,60	7,19	00'99	782 75	7,309
<u> </u>				2'5	9,55	5487	1255	39,86	0,164	18,25	96,36	45,85) -	8,196
K				8E'9	10,71	4598	754	44,70	0,118	25,45	7,19	40,56		7,309
8 -				2'5	9,55	3898	693	39'86	0,128	23,48	96,3	34,00		8,196

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10⁻⁶ m²/s (erster Wert im Feld) und 0,44 ·10⁻⁶ m²/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 31Volumenstromgruppe V5000, System 1_200_1

Volum	Volumenstromgruppe	ngrupp		V5000		-,	1_200_1	da_La_Ro	d _{R_} L _{R_} Rohranzahl:	[-/m/m]	z = 1,5 m	.5 m	Betrie	Betriebsart B ¹
	Vor:	Vorabschätzung	tzung		Haustechnische Ziele	ische Ziele	a)		CO ₂ -relev	CO ₂ -relevante Ziele		Koste	Kostenrelevante	Ziele
	√luft	S	V _{max} ∕L _{ges}	∆9 ^{re}	Ö, tu:	ď	Т _{ь,h}	ພ້	a	ಷ	ŽÖ	ME	Ϋ́, ••.	<u></u>
	s/m		m³/h	¥	ΚW	KWh	I	,	-	,	KWs/m³	kWh/m	€/m	₩
I				6,2	15,46	14005	2449	62,36	0,130	23,07	10,60	60,92		986,8
				8,35	14,01	10700	1967	56,51	0,137	21,94	9,55	46,19		7,047
7	1,77	200	22	9,17	15,4	8120	1135	62,12	0,104	28,86	10,55	86,88 88,88	49365	6,411
۷				8,48	14,23	7930	1281	57,40	0,120	24,97	9,71	34,89	0	6,938
: K				9,17	15,4	5695	869	62,12	60'0	32,33	10,55	25,38		6,411
82				8,48	14,23	5507	740	57,40	0,100	30,02	9,71	24,78		6,938
						1	_200_1				S = Z	3,0 m		
ı				96'6	16,72	15235	2586	67,44	0,126	23,76	11,50	95'99		800'8
Ξ				10,82	18,15	12490	2235	73,21	0,133	22,54	12,53	54,14		7,377
7	1,77	200	22	9,47	15,9	9848	1438	64,13	0,109	27,62	10,91	43,89	669.43	8,421
_				8,8	14,77	8096	1471	89'88 89'88	0,114	26,35	10,10	42,57) 	9'062
, K				9,47	15,9	6953	851	64,13	0,091	32,96	10,91	31,60		8,421
8/-				8'8	14,77	6744	956	89'69	0,094	31,78	10,10	30,54		9'065
)	_200_1				z = 4	4,5 m		
ı				11,3	18,97	17065	2780	76,52	0,121	24,76	13,12	74,99		8,061
=				11,38	19,1	13497	2377	77,04	0,131	22,90	13,22	58,65		900'8
7	1,77	200	52	9,64	16,18	11076	1520	65,26	0,102	29,39	11,11	49,73	764.57	9,451
_				20'6	15,22	8666	1487	61,39	0,111	27,12	10,42	44,46	5	10,047
К				9,64	16,18	6982	913	65,26	980'0	34,77	11'11	35,95		9,451
<u>×</u>				9,07	15,22	7159	88	61,39	0,092	32,70	10,42	32,51		10,047
					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									

Meteorologischer Standort Giessen, Bodenart a=0,92 · 10° m/9s (erster Wert im Feld) und 0,44 · 10° m/9s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 32Volumenstromgruppe V5000, System 03_50_5

Volum	Volumenstromgruppe	ngrupp		V5000		8	03_50_5	dr_Lr_Ro	d _{R_} L _{R_} Rohranzahl: [m/m/-]	[-/m/m]	Z = 1	1,5 m	Betrie	Betriebsart B¹
	Vor	Vorabschätzung	tzung		Haustechnische Ziele	ische Ziel	au		CO ₂ -relev	CO ₂ -relevante Ziele		Kostei	Kostenrelevante	: Ziele
	√lu#	Š	V _{max} ∕L _{ges}	∆9 ^w °	Ö, EU,	ď	Тьл	ຜ້	a _q	ಜ್	Ž	ME	Ϋ́,	<u>L</u>
	s/w		m?/h	×	KW	KWh	I	,	-	,	KWs/m³	kWh/m	€/m	₩
ı				9,52	15,98	11614	2014	46,11	0,180	16,64	10,76	80'8E		1,675
=				7,51	12,62	7317	1409	36,42	0,200	14,99	8,34	23,41		2,121
7	3,93	166,7	8	8,4	14,1	7413	1142	40,69	0,160	18,73	9,40	24,90	107.09	1,899
۷		'		7,1	17.9	6318	1237	34,34	0,204	14,74	7,82	20,13	0	2,250
K				8,4	14,1	4893	683	40,69	0,145	20,67	9,40	16,73		1,899
87.				7,1	11,9	4181	629	34,34	0,164	18,31	7,82	13,98		2,250
						0	03_50_5				€ = Z	3,0 m		
٦				6'6	16,62	11351	1878	47,96	0,172	17,44	11,22	37,59		2,541
=				9,23	15,5	7701	1429	44,73	0,193	15,55	10,41	24,86		2,725
7	3,93	166,7	8	8,41	14,11	8020	1363	40,72	0,177	16,98	9,41	26,41	168 94	2,993
۷		'		7,34	12,32	8/0/	1336	35,55	0,196	15,29	8,12	22,76	t 2	3,428
χ.				8,41	14,11	2229	781	40,72	0,146	20,61	9,41	19,06		2,993
8 /-				7,34	12,32	4897	744	35,55	0,158	18,99	8,12	16,49		3,428
						0	03_50_5				z = 4	4,5 m		
ı				10,4	17,39	12293	1981	50,18	0,168	17,91	11,77	40,93		3,348
=				2'6	16,23	8149,3	1505	46,84	0,192	15,63	10,94	26,34		3,588
7	3,93	166,7	8	95'8	14,37	8887	1413	41,47	0,165	18,15	09'6	29,67	737 91	4,052
_				7,35	12,34	7214	1316	35,61	0,190	15,82	8,14	23,38	- 01	4,719
X				95'8	14,37	6317	849	41,47	0,140	21,47	09'6	21,74		4,052
80 -				7,35	12,34	5240	784	35,61	0,156	19,29	8,14	17,70		4,719
	A section of the sect	7 4 l 4 V		0 - 4:-::-	Control of the Contro	- 6 + 6	G-1 - L +-	- 10 mg 4 mg 20 mm	3 <i>₁</i> 3 <i>₁</i> .					

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10 m2/s (erster Wert im Feld) und 0,44 ·10 m2/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 33Volumenstromgruppe V5000, System 03_100_5

Volum	Volumenstromgruppe	grupp		V5000		.03	03_100_5	dr_Lr_Ro	d _{R_} L _{R_} Rohranzahl:	[-/m/m]	z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vora	Vorabschätzung	zung		Haustechn	Haustechnische Ziele	0)		CO ₂ -relev	CO ₂ -relevante Ziele		Koster	Kostenrelevante	: Ziele
	Vluft	3	Ý _{max} ∕L _{ges}	∆9°°°	, ju	ď	Ть,	చి	ą	ಜ್	'n	ME	Ž,	4
	s/w	-	m²⁄th	¥	KW	KWh	Н	-	,	1	KWs/m³	KWh/m	€/m	€MV
П				13,8	23,16	21702	2945	22'99	0,169	17,74	15,78	36,07		2,281
=				11,84	19,87	15506	2323	47,85	0,187	16,07	13,41	25,22		2,659
7	3,93	333,3	0	11,56	19,4	10558	1233	46,72	0,145	20,62	13,07	18,04	105.65	2,723
_				10,35	17,37	6926	1355	41,83	0,173	17,36	11,61	16,16	2	3,041
K				11,56	19,4	7043	260	46,72	0,134	22,32	13,07	12,19		2,723
148				10,35	17,37	6598	781	41,83	0,147	20,34	11,61	11,25		3,041
						õ	03_100_5				E = Z	3,0 m		
ı				14,28	23,97	22709	2970	57,72	0,163	18,41	16,36	38,02		3,794
=				12,67	21,26	16825	2423	51,19	0,179	16,72	14,41	27,61		4,277
Х	393	333,3	0	11,72	19,6	12431	1452	47,20	0,146	20,62	13,22	21,24	181 86	4,639
				10,64	17,86	11359	1511	43,01	0,166	18,10	11,96	18,95	0	5,091
K				11,72	19,6	8011	817	47,20	0,127	23,61	13,22	13,99		4,639
81/-				10,64	17,86	7970	895	43,01	0,140	21,44	11,96	13,71		5,091
						ö	03_100_5				z = 4	4,5 m		
ı				15,32	25,72	23397	2957	61,93	0,157	19,05	17,62	39,43		4,347
=				13,09	21,97	17854	2535	52,90	0,177	16,96	14,92	29,39		5,089
7	3,93	333,3	0	11,82	19,84	13533	1616	47,78	0,149	20,17	13,39	23,04	223 63	5,636
_				10,84	18,19	11817	1521	43,80	0,160	18,71	12,20	19,84		6,147
K.				11,82	19,84	6996	696	47,78	0,126	23,78	13,39	16,72		9:99'9
» 7				10,84	18,19	6928	929	43,80	0,135	22,21	12,20	14,82		6,147

Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste Meteorologischer Standort Giessen, Bodenart a=0,92 ·10* m?/s (erster Wert im Feld) und 0,44 ·10* m?/s

Tabelle 34Volumenstromgruppe V5000, System 05_50_5

Volum	Volumenstromgruppe	ddnußı	• V5000	000		ő	05_50_5	dr_Lr_Roi	d _{R_} L _{R_} Rohranzahl:	[-/m/m]	z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vora	Vorabschätzung	zung	4	Haustechnische	ische Ziele	G)		CO ₂ -relev	CO ₂ -relevante Ziele		Koste	Kostenrelevante	: Ziele
	Vluft	рД	Ý _{max} Á _{ges}	wan ™6√	Q ^{MU} QLENT	,	^{ч'q} Т	3	Ъ	βe	³/\D	ЭМ	Kans	LP
	m/s		m²/h	×	KW	KWh	Н	-	,	-	KWs/m³	kWh/m	€/m	€MV
ı				9,12	15,4	11196	1989	54,31	0,151	19,85	10,48	38,02		3,162
=				0'8	13,37	8049	1505	47,15	0,159	18,86	9,01	27,07		3,642
7	1,42	9	8	8,05	13,51	7049	1128	47,64	0,136	22,04	9,11	24,36	194 79	3,604
_				7,14	11,98	6393	1234	42,25	0,164	18,27	8,01	21,37) 	4,065
χ,				8,05	13,51	4672	675	47,64	0,123	24,41	9,11	16,39		3,604
81/-				7,14	11,98	4246	670	42,25	0,134	22,35	8,01	14,70		4,065
						0	9-05-50				E = Z	3,0 m		
ı				95'6	16,05	11064	1871	09'99	0,144	20,85	10,94	37,89		4,152
=				6 6 7	14,97	8526	1526	52,79	0,152	19,70	10,17	28,91		4,452
7	1,42	9	8	90'8	13,53	7683	1345	47,71	0,149	20,14	9,13	26,16	266 56	4,925
				7,39	12,4	7214	1330	43,73	0,157	19,13	8,32	24,33	0	5,374
, X				90'8	13,58	5379	8//	47,89	0,123	24,38	9,17	18,87		4,907
8 -				7,39	12,4	5055	765	43,73	0,129	23,30	8,32	17,62		5,374
						0	9-09-30				z = 4	4,5 m		
ı				10,0	16,85	12279	2030	59,42	0,141	21,33	11,52	42,21		5,121
=				9,34	15,68	9064	1612	95,30	0,151	19,83	10,68	30,77		5,503
7	1,42	9	29	8,2	13,76	8621	1401	48,53	0,138	21,70	9,29	29,72	345 17	6,271
<u> </u>				7,43	12,47	7437	1324	43,98	0,151	19,81	8,37	25,24	<u>.</u>)	6,920
χ				8,2	13,76	6170	851	48,53	0,117	25,57	9,29	21,78		6,271
80 /-				7,43	12,47	5444	808	43,98	0,126	23,76	8,37	19,03		6,920

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10⁻⁶ m²/s (erster Wert im Feld) und 0,44 ·10⁻⁶ m²/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 35Volumenstromgruppe V5000, System 05_100_5

Volum	Volumenstromgruppe	grupp	e V5000	000		05	05_100_5	dR_LR_Rol	d _{R_} L _{R_} Rohranzahl:	[-/m/m]	z = 1	1,5 m	Betric	Betriebsart B ¹
	Vora	Vorabschätzung	gunz		laustechn	austechnische Ziele			CO ₂ -relev	CO ₂ -relevante Ziele		Koste	Kostenrelevante	e Ziele
	Vluft	3	V _{max} ∕L _{ges}	∆9°°°	Ö, ru:	ď	Т _{ь,һ}	ຜ້	a	S.	ŽŎ	ME	X.	Ъ
	m/s		m³/h	×	KAV	kwh	н		,	,	KWs/m³	kWh/m	w,⊜	M€
ı				13,57	22,8	21058	2986	28,73	0,123	24,35	15,79	£6'9£		4,228
-				12,4	20,8	16491	2407	71,83	0,127	23,66	14,35	28,80		4,634
7	1,42	200	0	11,27	18,91	10287	1233	65,30	0,104	28,81	12,99	18,43	192 78	260'9
				10,45	17,54	9841	1361	25,09	0,120	24,97	12,00	17,32	0 1/201	5,495
, K				11,27	18,91	6889	759	06,30	960'0	31,34	12,99	12,46		2'00'5
81/-				10,45	17,54	6999	796	60,57	0,104	28,93	12,00	11,95		5,495
						96	05_100_5				€ = Z	3,0 m		
ı				14,28	23,97	21338	2854	82,77	0,116	25,82	16,63	37,72		5,476
=				13,27	22,27	18088	2517	06'92	0,121	24,82	15,41	31,80		5,894
7	1,42	200	0	11,27	18,91	11532	1489	65,30	0,112	26,74	12,99	20,48	262.51	6,941
				10,7	17,96	11574	1521	20'29	0,114	26,28	12,31	20,51	0,202	7,308
χ.				11,27	18,91	8095	888	06,30	960'0	31,48	12,99	14,65		6,941
81/-				10,7	17,96	8153	908	62,02	260'0	30,97	12,31	14,73		7,308
						96	05_100_5				z = 4	4,5 m		
ı				19,13	25,4	23928	3053	12' 28	0,111	27,06	99'21	42,55		895'9
=				13,74	23,06	19308	2646	29,63	0,119	25,20	15,98	34,02		7,234
7	1,42	200	0	11,66	19,57	13441	1623	67,58	0,105	28,60	13,46	24,06	333 64	8,524
				11,0	18,48	12138	1541	63,82	0,110	27,20	12,68	21,60	<u> </u>	9,027
X,				11,66	19,57	9561	983	67,58	680'0	33,59	13,46	17,41		8,524
8 -				11,0	18,48	8858	954	63,82	0,094	32,06	12,68	16,06		9,027

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10° m²/s (erster Wert im Feld) und 0,44 ·10° m²/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

 Tabelle 36
 Volumenstromgruppe V10000, System 1_200_1

Haustechnische Ziele Öuw Oww Tb,h E,e kW kWh H - kW kWh H - 20,87 13496 1372 35,81 23,08 8329 892 39,60 24,37 11943 1051 41,81 21,26 10748 1195 36,46 24,37 8229 617 41,81 24,37 8229 617 41,81 24,37 8229 617 41,81 24,37 8229 617 41,81 24,37 14244 1343 42,79 24,94 14244 1343 42,79 24,94 14244 1343 42,79 21,89 8677 702 37,56 21,89 8677 702 37,66 24,94 15438 1564 55,87 32,4 15438 1664 55,87 31,4 9947 1067 53,87 21,86 13004 1342	V10000		1_	1_200_1	dr_Lr_Ro	d _{R_} L _{R_} Rohranzahl: [m/m/-]	[-/m/m]	z = 1,5 m	m 2,	Betrie	Betriebsart B¹
Nurt L/d Nmss/Luss Gym, Gym, Nms		ustechni	sche Ziele	0)		CO ₂ -relev	ante Ziele		Koste	Kostenrelevante Ziele	: Ziele
mis		Ġ™; Gum	O	Ть,	3	вр	βe	۵٧e	ME	Kenss	LP
3,54 200 60 7,26 24,37 11943 1051 41,81 6,33 21,26 10748 1195 36,46 14,81 15,26 24,37 8229 617 41,81 36,46 15,33 21,25 10748 1195 36,46 17,26 24,37 8229 617 41,81 36,46 17,26 24,37 8229 617 41,81 36,46 17,26 24,37 8229 617 41,81 36,46 17,26 24,37 8229 617 41,81 36,46 17,26 24,37 8229 617 41,81 36,46 17,43 24,94 14244 1343 42,79 17,43 24,94 9886 735 42,79 17,43 24,94 9886 735 42,79 17,43 24,94 9886 735 42,79 17,43 24,94 15438 156 42,94 15438 156 42,79 17,43 24,94 15438 156 42,79 17,43 24,94 15438 156 42,79 17,43 24,94 15438 156 42,94 156 156 156 156 156 156 156 156 156 156		KW	KWh	Н	-	-	-	KWs/m³	KWh/m	wj⊜	€MV
3,54 200 50 7,26 24,37 11943 1051 41,81 6,33 21,25 10748 1195 36,46 7,26 24,37 8229 617 41,81 36,46 6,33 21,25 7298 611 36,46 11	6,22	20,87	13496	1372	35,81	0,178	16,88	88'9	55,48		4,724
3,54 200 50 7,26 24,37 11943 1051 41,81 51 613 21,25 10748 1195 36,46 51 7,26 24,37 8229 617 41,81 36,46 51 6,33 21,25 7298 611 36,46 51 36,46 51 35,46 51 35,46 51 35,46 51 35,46 51 35,46 51 35,48 51 35,58 51 35,48 51 35,58 51 35,48 51 35,58 51 35,48 51 35,58 51 35,48 51 35,58 51 35,48 51 35,58 51 35,48 51 35,58 51 3	88'9	23,08	8329	892	09'6E	0,187	16,02	2,68	33,85		4,271
1,000 1,00		24,37	11943	1051	41,81	0,154	19,50	8,14	65,03	497 97	4,045
7,26	6,33	21,25	10748	1195	36,46	0,194	15,43	7,02	43,29	40,404	4,639
1, 200 6,33 21,25 7298 611 36,46 3,54 200 50 7,43 24,94 14244 1343 42,79 4,65 21,89 12669 1342 37,56 5,5 21,89 8677 702 37,56 5,5 21,89 8677 702 37,56 5,5 21,89 8677 702 37,56 5,5 21,89 8677 702 37,56 5,5 21,89 8677 702 37,56 5,5 21,89 8677 702 37,56 5,5 21,89 8677 702 37,56 5,5 21,89 8677 702 37,56 6,5 21,89 8677 702 37,56 6,5 31,4 9947 1067 53,87 6,5 21,85 13004 1342 37,49 6,5 21,85 13004 1342 37,49 6,5 21,85 13004 1342 37,49 6,5 21,85 13004 1342 37,49 6,5 21,85 13004 1342 37,49 7,5 21,85 13004 37,49 7,5 21,85 13004 37,49 7,5 21,85 13004 37,49 7,5 21,85 13004 37,49 7,5 21,85 13004 37,49 7,5 21,85 13004 37,49 7,5 21,85 1400 3000 3000 300 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000	7,26	24,37	8229	617	41,81	0,131	22,88	8,14	35,75		4,045
1,200_1 1,00	6,33	21,25	7298	611	36,46	0,146	20,49	7,02	31,15		4,639
3,54 200 50 7,43 24,94 14244 1343 42,79 6,52 21,89 12669 1342 37,56 6,52 21,89 8677 702 37,56 6,52 21,89 8677 702 37,56 6,52 21,89 8677 702 37,56 6,52 21,89 8677 702 37,56 6,52 21,89 8677 702 37,56 6,52 21,89 8677 702 37,56 87 87,57 87,5			1	_200_1				€ = Z	z = 3,0 m		
3,54 200 60 7,43 29,9 9048 963 51,30 6,52 24,94 14244 1343 42,79 6,52 21,89 12669 1342 37,56 7,43 24,94 9886 736 42,79 6,52 21,89 8677 702 37,56 702 37,56 702 32,4 15438 1564 56,59 9,35 31,4 9947 1067 53,87 6,51 21,85 13004 1342 37,49	8,51	28,57	13545	1374	49,02	0,177	16,91	99'6	55,71		4,355
3,54 200 50 7,43 24,94 14244 1343 42,79 6,52 21,89 12669 1342 37,56 7,43 24,94 9886 735 42,79 7,743 24,94 9886 735 42,79 7,743 24,94 9877 702 37,56 7,52 21,89 8677 702 37,56 7,56 7,53 25,28 15772 1411 43,37 6,51 21,85 13004 1342 37,49	<u>ნ</u>	29,9	9048	963	51,30	0,186	16,12	10,13	36,82		4,161
6,52 21,89 12669 1342 37,56 7,43 24,94 9886 735 42,79 6,52 21,89 8677 702 37,56 7,43 24,94 9886 735 42,79 8,75 21,89 8677 702 37,56 9,65 32,4 15438 1564 55,59 9,36 31,4 9947 1067 53,87 9,36 7,53 25,28 15772 1411 43,37 6,51 21,85 13004 1342 37,49		24,94	14244	1343	42,79	0,165	18,20	8,35	59,48	622 11	4,989
7,43 24,94 9886 735 42,79 6,52 21,89 8677 702 37,56 1 200		21,89	12669	1342	37,56	0,185	16,20	7,25	51,61	1770	5,684
1,000 1,00	7,43	24,94	9886	735	42,79	0,130	23,08	8,35	43,00		4,989
1_200_1 1_200_1 1_200_1 9,65 32,4 15438 1564 55,59 9,35 31,4 9947 1067 53,87 3,54 200 50 7,53 25,28 15772 1411 43,37 6,51 21,85 13004 1342 37,49	6,52	21,89	8677	702	37,56	0,141	21,21	7,25	37,25		5,684
3,54 200 50 7,53 25,28 1504 1342 37,49 1342 37,49			1	_200_1				z = 4	4,5 m		
3,54 200 50 7,53 25,28 15772 1411 43,37 6.51 21.85 13004 1342 37,49	9'6	32,4	15438	1564	69'99	0,177	16,93	11,03	63,52		4,707
3,54 200 60 7,53 25,28 15772 1411 43,37 6.51 21.85 13004 1342 37,49	9,35	31,4	9947	1067	23,87	0,188	15,99	10,67	40,41		4,857
6.51 21.85 13004 1342 37.49		25,28	15772	1411	43,37	0,156	19,18	8,47	29'99	762.51	6,033
	6,51	21,85	13004	1342	37,49	0,180	16,62	7,24	53,29	- - - -	086'9
K., 7,53 25,28 10915 785 43,37 0,126	7,53	25,28	10915	785	43,37	0,126	23,86	8,47	17,74		6,033
	6,51	21,85	9183	734	37,49	0,140	21,46	7,24	39,50		086'9

Meteorologischer Standort Giessen, Bodenart a=0,93 ·10° m²/s (erster Wert im Feld) und 0,44 ·10° m²/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Betriebsart B¹ 7,219 7,219 4,876 4,876 5,455 5,358 5,344 5,344 5,984 5,984 6,527 5,895 5,926 7,957 5,217 6,527 5 3 Kostenrelevante Ziele 492,18 620,74 760,45 \$ €m 88 88 43,34 29,73 68,79 52,00 53,72 KWh/m 64,63 41,48 31,84 49,88 35,81 66'92 85,08 37,87 56,97 51,71 45,57 45,07 븿 z = 3.0 m $z = 1.5 \, \text{m}$ z = 4.5 mKWs/m³ 12,49 11,60 13,24 13,17 10,68 10,68 Š 9,23 9,49 10,21 9,25 10,21 9.25 10,51 89,6 10,51 89,6 6 6 CO₂-relevante Ziele 24,76 18,26 19,10 16,43 26,25 [-/m/m] 17,28 16,36 21,96 22,80 20,62 25,00 23,72 21,77 19,60 24,22 16,37 മ dr_LR Rohranzahl: 0,145 0,114 0,183 0,164 0,173 0,183 0,12 0,126 0,183 0,138 0,153 0,124 0,132 0,169 0,137 0,121 0,157 å 53,13 27,00 48,43 49,18 42,89 44,04 47,12 43,00 47,12 43,00 48,43 44,40 44,40 60,22 44,62 49,18 44,62 59,91 ω _300_1 2113 1816 1446 1592 1110 1269 2241 1423 2432 98 1454 ا م 88 825 1501 870 88 300 8 15 300 ェ Haustechnische Ziele 13253 18316 14678 14889 10270 17752 12299 27786 20909 12966 16741 10868 19101 18859 20998 15661 23461 ₩W ď 39,78 27,63 30,28 27,63 31,12 28,53 31,12 27,56 34,14 8 28,53 28,3 8,2 31,6 28,67 31,6 28,67 . O ₹ 贸 11,46 11,54 9,02 10,17 10,9 9,02 9,41 8,54 8,42 8,5 9,27 9,41 8,54 8,21 9,27 ω π V_{max} ∕L_{ges} 833 833 833 m∛h Vorabschätzung Volumenstromgruppe 3 8 8 3,54 3,54 3,54 \ Ve# Шß ž ž ž エ \leq エ \times \times I

Tabelle 37 Volumenstrom V10000, System 1 300 1

Meteorologischer Standort Giessen, Bodenart a=0,93 ·10° m/9s (erster Wert im Feld) und 0,44 ·10° m/9s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 38Volumenstromgruppe V10000, System 15_200_1

Volum	Volumenstromgruppe	grupp	• V10000	000		15	15_200_1	dr_Lr_Roi	d _{R_} L _{R_} Rohranzahl:	[-/m/m]	z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vora	Vorabschätzung	zung	-	laustechn	Haustechnische Ziele	a)		CO ₂ -relev	CO ₂ -relevante Ziele		Koste	Kostenrelevante	Ziele
	Vluft	рЛ	V _{max} ∕L _{ges}	wan ™6∇	Ó ^{NU} , LINNT	ď	Тья	°3	ер	ß	۵۷°	ME	X.	П
	m/s		m²⁄h	¥	KW	KWh	I	-	-	,	KWs/m³	KWh/m	€/m	€W
ı				6,02	20,23	12715	1300	42,22	0,147	20,41	22'9	54,23		10,217
=				99	22,04	9432	666	46,00	0,152	19,70	7,42	96'6E		9,378
7	1,57	133,3	8	7,03	23,6	11646	1050	49,25	0,130	23,15	7,98	99'05	1033.43	8,758
				6,31	21,18	10836	1189	44,20	0,158	19,02	7,11	45,63	r_ 	9,759
, K				7,03	23,6	7935	611	49,25	0,111	27,10	7,98	35,28		8,758
81/-				6,31	21,18	7323	618	44,20	0,121	24,73	7,11	32,17		9,759
						16	15_200_1				S = 2	3,0 m		
ı				8,12	27,26	12467	1265	68'99	0,146	20,57	06,8	53,24		8,791
=				9'8	28,76	10496	1098	60,02	0,150	19,95	9,84	44,59		8,333
7	1,57	133,3	ន	7,2	24,17	13661	1323	50,44	0,139	21,55	8,18	98,80	1198 24	9,915
				6,54	21,95	12772	1324	45,81	0,149	20,13	7,38	54,34	1	10,918
χ,				2'2	24,17	9431	718	50,44	0,109	27,41	8,18	41,99		9,915
8 .				6,54	21,95	8772	708	45,81	0,116	25,86	7,38	38,77		10,918
						16	15_200_1				z = 4	4,5 m		
ı				9,23	31,0	13967	1417	64,70	0,146	20,57	10,64	59'65		8,881
=				0'6	30,32	11363	1179	63,28	0,149	20,11	10,40	48,34		9,080
×	1,57	133,3	8	€'∠	24,5	15028	1381	51,13	0,132	22,71	06,8	65,21	1376 55	11,237
<u>-</u>				95'9	22,02	13191	1329	45,95	0,145	20,71	7,41	56,40	5	12,503
, S				€'∠	24,5	10470	8//	51,13	0,107	58'09	06,8	46,76		11,237
8 .				95'9	22,02	9289	736	45,95	0,114	26,34	7,41	41,16		12,503

Meteorologischer Standort Giessen, Bodenart a=0,93 ·10 m2/s (erster Wert im Feld) und 0,44 ·10 m2/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 39Volumenstromgruppe V10000, System 15_300_1

Volum	Volumenstromgruppe	ıgrupp		V10000		15	15_300_1	dr_Lr_Ro	da_La_Rohranzahl:	[-/w/w]) = Z	1,5 m	Betri	Betriebsart B¹
	Vora	Vorabschätzung	Sung:		Haustechi	Haustechnische Ziele	<u>e</u>		CO ₂ -relev	CO ₂ -relevante Ziele	an .	Koster	Kostenrelevante	e Ziele
	ΨnIA	рЛ	Ý _{mæv} ∕L _{ges}	A9™°	C) en:	o	Тьь	3	9	βe	۵۷۰	ME	Karis	Ч
	s/w		m³/h	X	KW	KWN	Н	-	-	-	KWs/m³	KWh/m	€/m	€W
ı				8,16	27,4	21830	1967	56,26	0,132	22,79	9,34	63,19		11,304
=				80'8	27,12	18030	1679	92,68	0,136	22,05	9,24	51,92		11,420
7	1,57	200	6 83	8'8	29,54	15174	1108	59'09	0,107	28,12	10,11	45,18	1032	10,485
				8,1	27,16	14756	1259	22'59	0,125	24,06	9,25	43,05	7	11,404
ξ.				8'8	29,54	10424	672	99'09	0,094	31,85	10,11	31,47		10,485
148				8,1	27,16	10197	709	55,77	0,102	29,53	9,25	30,54		11,404
						16	15_300_1				€ = Z	3,0 m		
ı				8'6	32,9	22801	2052	95,78	0,131	22,81	11,32	66,01		11,224
=				10,54	35,4	20731	1907	72,68	0,134	22,32	12,22	59,82		10,432
7	1,57	200	e, e, e	9,04	30,34	18014	1403	62,30	0,114	26,36	10,40	53,21	1231	12,172
				8,42	28,26	17777	1442	58,02	0,119	25,31	9,65	52,23	2	13,067
ξ.				9,04	30,34	12660	811	62,30	0,094	32,05	10,40	38,25		12,172
148				8,42	28,26	12415	824	58,02	0,097	30,94	9,65	37,37		13,067
						16	15_300_1				z = 4	4,5 m		
ı				11,14	37,4	25239	2224	62'92	0,129	23,30	12,94	73,30		11,020
=				11,12	37,32	22566	2058	76,63	0,133	22,51	12,91	65,20		11,044
7	1,57	200	33,3	9,18	30,81	20024	1480	63,26	0,108	82'28	10,57	59,54	1374	13,377
<u> </u>				8,55	28,7	18473	1457	58,93	0,115	26,03	9,81	54,48		14,361
X				9,18	30,81	14019	098	63,26	060'0	33,47	10,57	42,54		13,377
» -				8,55	28,7	13189	855	58,93	960'0	31,67	9,81	39,80		14,361

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10° m²/s (erster Wert im Feld) und 0,44 ·10° m²/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 40Volumenstrom V10000, System 05_50_5

Volume	nstrom	Volumenstromgruppe		V10000		ő	05_50_5	dR_LR_RO	d _{R_} L _{R_} Rohranzahl: [m/m/-]	[-/m/m]	z = 1,5 m	,5 m	Betrie	Betriebsart B¹
	Vora	Vorabschätzung	ung	-	laustechn	Haustechnische Ziele	0)		CO ₂ -relevante Ziele	ante Ziele		Kostei	Kostenrelevante	e Ziele
	Vluft	рЛ	Ý _{max} Áges	∆9 [™] ,	Ó, nu ,	, O	$T_{b,h}$	ຶ່3	Ъ	βe	۵۷°	ME	Kares	٦٦
	m/s	-	m²/h	K	KW	KWh	Н	-	-		KWs/m³	KWh/m	wj∋	€₩
ı				0'2	23,35	12741	1283	39,16	0,180	16,65	92'2	41,78		2,017
-				5,56	18,7	6229	289	31,36	0,196	15,33	60'9	20,20		2,519
7	2,83	6	8	6,35	21,31	10905	1076	35,74	0,177	17,00	2,03	35,92	188 40	2,210
				5,21	17,5	8584	1131	29,35	0,236	12,73	5,66	26,24	£	2,691
, ,				6,35	21,31	6930	594	35,74	0,153	19,57	7,03	23,47		2,210
- 148				5,21	17,5	5249	503	29,35	0,171	17,50	5,66	17,40		2,691
						0	05_50_5				S = 2	3,0 m		
J				7,2	24,15	12454	1202	40,50	0,173	17,38	8,05	41,22		2,626
=				71,7	24,1	9299	700	40,42	0,190	15,75	8,03	21,30		2,632
7	2,83	6	8	96,36	21,35	11444	1258	35,80	0,197	15,26	7,04	36,777	253.71	2,971
				5,39	18,09	9428	1207	30,34	0,229	13,10	5,87	29,08		3,506
, ,			•	96,36	21,35	7683	299	35,80	0,153	19,61	7,04	26,03		2,971
87				5,39	18,09	6200	586	30,34	0,169	17,74	5,87	20,61		3,506
						0	05_50_5				z = 4	4,5 m		
I				6'2	26,44	13345	1263	44,34	0,169	17,72	8,87	44,34		3,029
=				7,51	25,2	6921	731	42,26	0,189	15,88	8,43	22,45		3,178
7	2,83	6	40	9'9	21,82	12363	1276	69'96	0,185	16,25	7,21	40,32	320.33	0/9'E
<u>-</u>				5,4	18,13	9541	1185	30,40	0,222	13,50	5,88	29,68		4,417
X				9'9	21,82	9098	218	69'96	0,149	20,10	7,21	29,29		0/9'E
»[-				5,4	18,13	6705	631	30,40	0,168	17,82	5,88	22,30		4,417

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10⁻⁶ m²/s (erster Wert im Feld) und 0,44 ·10⁻⁶ m²/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 41Volumenstrom V10000, System 05_100_5

Volum	Volumenstromgruppe	grupp	e V10000	000		92	05_100_5	dR_LR_R0	d _{R_} L _{R_} Rohranzahl:	[-/w/w]	z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vora	Vorabschätzung	zung	4	laustechn	Haustechnische Ziele	g)		CO ₂ -relev	CO ₂ -relevante Ziele		Koste	Kostenrelevante	e Ziele
	Vluft	рД	Ý _{max} Á _{ges}	wan €V	C)	*****O	^{ч'q} Т	3	a	βe	QVe	ME	5 ⁵ 74 5	dП
	m/s	-	m²/h	У	KW	KWN	Н	-			KWs/m³	KWh/m	e'm	₩
П				10,85	36,42	28530	2303	57.17	0.154	19.45	12.42	48.26		2,507
				8,92	29,94	19067	1663	47.00	0.167	18.00	10.09	31.78		3,050
Х	2,83	200	28	99'6	32,1	17059	1172	50.39	0.131	22.85	10.87	29.64	182.62	2,845
_				8,16	27,4	14874	1266	43.01	0.163	18.44	9.18	24.91	20,20	3,333
K				99'6	32,1	11305	711	50.39	0.120	24.96	10.87	19.89		2,845
1 18				8,16	27,4	10060	707	43.01	0.134	22.34	9.18	17.42		3,333
						9	05_100_5				E = Z	3,0 m		
ı				11,27	37,84	27530	2114	59.40	0.147	20.44	12.93	46.98		3,304
=				10,56	35,46	19842	1679	55.66	0.162	18.55	12.08	33.27		3,526
Х	2,83	200	8	99'6	32,1	18542	1405	50.39	0.145	20.72	10.87	31.71	250.04	968'E
_				8,5	28,5	16905	1397	44.74	0.158	19.00	9.57	28.47	1000	4,387
K				99'6	32,1	12859	608	50.39	0.120	24.95	10.87	22.63		968'E
81				8,5	28,5	11740	791	44.74	0.129	23.30	9.57	20.46		4,387
						05	5_100_5				z = 4	z = 4,5 m		
П				11,8	9'68	29723	2232	62.16	0.144	20:30	13.57	50.91		3,974
-				11,07	37,14	20876	1752	58.30	0.160	18.70	12.68	35.06		4,238
×	2,83	200	8	89'6	32,5	20612	1473	51.02	0.137	21.97	11.01	35.59	314.77	4,843
_				8,5	28,53	17377	1393	44.79	0.153	19.58	9.58	29.43	- - -)	5,516
K				89'6	32,5	14547	828	51.02	0.115	26.01	11.01	25.74		4,843
» -				8,5	28,53	12530	828	44.79	0.126	23.76	9.58	21.90		5,516

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10° m/9s (erster Wert im Feld) und 0,44 ·10° m/9s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 42Volumenstrom V10000, System 05_150_5

Volum	Volumenstromgruppe	ngrupp		V10000		98	05_150_5	dR_LR_Ro	d _{R_} L _{R_} Rohranzahl:	[-/m/m]	Z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vors	Vorabschätzung	zung	T.	austechn	Haustechnische Ziele	a)		CO ₂ -relev	CO ₂ -relevante Ziele		Kostei	Kostenrelevante	: Ziele
	Vluft	P 7	Ý _{mæx} ∕L _{ges}	∆9°°°	Ġ ^{rw} ,	ď	Ть,	టి	ą	βe	ņ	ME	Z,	<u>-</u>
	s/w	1	m²/h	¥	KW	kwh	I	,	,	,	KWs/m³	kWh/m	€/m	₩
ı				13,34	44,8	38918	2762	90'99	0,144	20,78	15,40	44,40		2,859
=				11,51	986	28587	2170	56,91	0,154	19,42	13,16	32,23		3,319
7	2,83	8	13,33	11,32	38,0	20512	1215	E0'95	0,121	24,89	12,95	24,05	170 80	3,371
_				10,11	33,9	18805	1332	49,98	0,144	20,82	11,47	21,46	0	3,779
K				11,32	38,0	13681	752	ED/95	0,112	26,82	12,95	16,20		3,371
1/18				10,11	33,9	12763	768	49,98	0,122	24,50	11,47	14,93		3,779
						ŏ	05_150_5				S = 3	3,0 m		
ı				13,94	46,8	38585	2610	00'69	0,138	21,80	16,12	44,37		3,807
=				12,2	41,0	30286	2215	60,45	0,149	20,16	14,03	34,37		4,346
7	2,83	8	13,33	11,33	38,0	22647	1473	ED/95	0,132	22,67	12,95	26,20	237.56	4,689
_				10,36	34,8	21838	1498	51,31	0,140	21,49	11,80	25,05	0	5,120
ξ,				11,33	38,0	15818	698	ED/95	0,112	26,84	12,95	18,73		4,689
81.				10,36	34,8	15243	873	51,31	0,117	25,74	11,80	17,96		5,120
						ŏ	05_150_5				z = 4	4,5 m		
Į				14,7	49,23	42286	2755	72,58	0,133	22,63	16,99	48,91		4,596
=				12,8	43,0	32111	2327	63,40	0,147	20,35	14,75	36,50		5,262
7	2,83	8	13,33	11,47	38,5	25716	1569	92'99	0,124	24,17	13,13	30,03	301.66	5,877
_				10,5	35,2	22574	1494	51,90	0,135	22,28	11,94	26,05) <u>1</u> 	6,427
К				11,47	38,5	18223	646	92'99	0,106	28,31	13,13	21,72		5,877
» -				10,5	35,2	16341	808	51,90	0,113	26,53	11,94	19,32		6,427

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10⁻⁶ m3/s (erster Wert im Feld) und 0,44 ·10⁻⁶ m3/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 43Volumenstromgruppe V10000, System 08_50_5

Volum	Volumenstromgruppe	ngrupp		V10000		ŏ	08_50_5	dr_Lr_Ro	d _{R_} L _{R_} Rohranzahl:	[-/m/m]	Z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vors	Vorabschätzung	zung		laustechn	Haustechnische Ziele	0)		CO ₂ -relev	CO ₂ -relevante Ziele		Koste	Kostenrelevante	. Ziele
	Vluft	<u>8</u>	V _{mæx} ∕L _{ges}	~~6∇	Ġ ^{ru} ;	ď	Ть,	ຶ້ນ	9,	^a d	ŽŎ	ЭW	K.	Ч
	s/w	-	m²/h	X	KW	KWh	т	-	,		KWs/m³	KWh/m	€/m	₩
ı				6'5	19,83	9322	991	35,40	0,179	16,79	6,53	19'0E		3,406
=				5,13	17,23	96/9	648	30,76	0,188	15,97	5,60	18,83		3,920
7	-	62,5	8	5,74	19,27	9700	1037	34,40	0,180	16,70	6,33	31,83	270 13	3,505
۷ -				5,0	16,82	8294	1121	30,03	0,227	13,21	5,45	25,64	01,074	4,015
Κ,				5,74	19,27	6121	929	34,40	0,153	19,65	6,33	20,75		3,505
1/18				5,0	16,82	4920	480	30,03	0,164	18,30	5,45	16,45		4,015
						0	9-20-80				€ = Z	3,0 m		
ı				6,27	21,0	9446	826	37,49	0,174	17,24	96'9	31,21		4,452
=				6,64	22,3	6150	299	39,81	0,182	16,46	7,42	20,12		4,193
7		62,5	40	82'9	19,4	10359	1232	34,63	0,200	15,01	86,3	33,15	374.01	4,820
				5,19	17,4	9171	1195	31,06	0,219	13,70	5,66	28,65	- - - -	5,374
К.,				82'5	19,4	9089	618	34,63	0,153	19,66	86,3	23,07		4,820
1/18				5,19	17,4	5993	580	31,06	0,163	18,45	5,66	20,07		5,374
						0	98_50_5				z = 4	4,5 m		
ı				7,1	23,9	10427	1068	42,66	0,172	17,43	00'8	34,53		5,026
=				96'9	23,4	6604	713	41,77	0,181	16,53	7,82	21,62		5,134
7		62,5	40	6'5	19,8	11184	1246	35,35	0,187	16,02	6,52	96,36	480 51	290'9
_				5,2	17,5	9328	1175	31,24	0,212	14,17	5,70	29,41	- - - - - -	6,864
K				6'5	19,8	2892	682	35,35	0,149	20,12	6,52	26,16		290'9
2				5,2	17,5	6483	622	31,24	0,161	18,61	5,70	21,75		6,864

Meteorologischer Standort Giessen, Bodenart a=0,93 ·10 m2/s (erster Wert im Feld) und 9,44 ·10 m2/s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 44Volumenstromgruppe V10000, System 08_100_5

Volumenstromgruppe	nstron	grupp	e V1000	000		8	08_100_5	d _{R_} L _{R_} Rohranzahl:	ranzahl:	[-/m/m]	Z = 1	1,5 m	Betrie	Betriebsart B ¹
	Vora	Vorabschätzung	Bunz	Ī	austechni	Haustechnische Ziele			CO ₂ -relevante	ante Ziele	4:	Kostei	Kostenrelevante	. Ziele
	Vluft	5	V _{max} ∕L _{ges}	∆9 ^{res}	Ö, m.,	ď	т _{ф,}	ຜ້	g.	ಜ್	Ž	ME	χ. 	<u></u>
	s/w		m²/h	×	KW	KWh	I			,	KWs/m³	KWh/m	€/m	M€
Ī				29'6	32,44	24911	2146	57,43	0,146	20,55	11,07	42,55		4,211
-				8,55	28,7	18629	1671	50,81	0,152	19,74	9,72	31,60		4,760
7	1,1	125	8	8,82	29,61	15692	1148	52,42	0,124	24,20	10,05	27,49	273.20	4,613
_				78,7	26,42	14465	1265	46,78	0,148	20,25	8,90	24,64		5,170
χ,				8,82	29,61	10473	969	52,42	0,113	26,64	10,05	18,59		4,613
81				78,7	26,42	9751	704	46,78	0,122	24,52	8,90	17,12		5,170
						80	08_100_5				€ = Z	3,0 m		
I				10,1	33,9	24093	1977	60,02	0,139	21,58	11,59	41,49		5,529
=				6,97	33,45	19705	1709	59,22	0,147	20,41	11,43	33,62		5,603
7	1,1	125	8	8,82	28,61	17177	1387	59'05	0,137	21,93	69'6	29,65	37.4.86	6,551
				8,2	27,5	16518	1388	48,69	0,142	21,07	9,29	28,33) - -	6,816
χ,				8,82	29,61	11922	793	52,42	0,113	26,62	10,05	21,16		066,8
81				8,2	27,5	11532	962	48,69	0,117	25,65	9,29	20,37		6,816
						80	08_100_5				z = 4	4,5 m		
ı				10,6	35,5	26397	2123	62,85	0,136	22,01	12,17	45,60		6,643
=				10,5	35,1	20990	1808	62,14	0,146	20,55	12,03	35,85		6,719
7	1,1	125	23	0'6	36,2	19114	1449	64,09	0,128	23,35	12,42	33,32	471.69	6,515
<u>-</u>				8,26	27,72	17114	1395	49,04	0,138	21,72	96,8	29,50	<u> </u>	8,514
X				0'6	30,2	13496	861	53,47	0,108	27,75	10,26	24,07		608' 2
 8/-				8,26	27,72	12380	837	49,04	0,115	26,19	96,8	21,92		8,514

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10° m/9s (erster Wert im Feld) und 0,44[10° m/9s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

Tabelle 45Volumenstromgruppe V10000, System 08_150_5

Volum	Volumenstromariuppe	dalibbi	V1000	000		8	08 150 5	ob la Ba	de Le Rohranzahl	[m/m/-]	7=1	15 m	Betrie	Retriebeart B1
	Vora	Vorabschätzung	B		laustechn	Haustechnische Ziele			CO ₂ -relev	CO ₂ -relevante Ziele	1	Koster	Kostenrelevante	Ziele
	V _{luff}	3	V _{max} ∕L _{ges}	∆9°°°	Ö, w.,	ď		ຜ້	o.	β	ð	ME	Ž.	<u></u>
	s/m		m³/h	¥	KW	kwh	I	'	'	'	KWs/m³	kWh/m	€/m	€W
٦				12,23	41,1	35368	2655	72,23	0,128	23,41	14,18	41,11		4,762
=				11,1	37,3	28272	2198	95,59	0,133	22,61	12,81	32,69		5,247
7	1	187,5	13,33	10,67	9,5%	19209	1194	62,92	0,106	28,27	12,27	22,89	260.94	5,467
۷					32,9	18380	1331	57,82	0,124	24,27	11,23	21,48	+C1007	5,948
K				10,67	35,8	12914	742	62,92	860'0	90,59	12,27	15,53		5,467
<u>.</u>				8'6	32,9	12492	770	57,82	0,105	28,51	11,23	14,90		5,948
						ŏ	08_150_5				S = 2	3,0 m		
				12,8	43,0	35208	2534	75,57	0,123	24,42	14,87	41,18		6,307
Ε				11,83	39,7	30621	2295	22'69	0,128	23,45	13,68	35,60		6,831
7	1.	187,5	13,33	10,7	35,6	21312	1453	62,57	0,116	25,78	12,20	25,11	361.61	7,618
				10,1	33,9	21507	1493	89'69	0,118	25,32	11,59	25,28	2	8,000
				10,7	35,8	14947	980	62,92	860'0	30,55	12,27	17,97		7,576
82				10,1	33,9	15039	873	89'69	660'0	30,28	11,59	18,07		8,000
						ŏ	08_150_5				Z = 4	4,5 m		
				13,5	45,3	38691	2678	79,62	0,118	25,39	15,69	45,49		7,574
=				12,29	41,25	32622	2409	72,50	0,126	23,80	14,24	38,01		8,318
7	1.1	187,5	13,33	10,82	36,32	24187	1544	63,83	0,109	27,53	12,46	28,74	457.49	9,447
<u> </u>				10,3	34,6	22346	1493	60,81	0,114	26,31	11,84	26,40	<u>-</u>	9,917
, X				10,82	36,32	17183	286	63,83	0,093	32,23	12,46	20,78		9,447
81/-				10,3	34,6	16256	918	60,81	960'0	31,12	11,84	19,59		9,917
					"] 					

Meteorologischer Standort Giessen, Bodenart a=0,92 ·10° m/3s (erster Wert im Feld) und 0,44 ·10° m/3s Leistungsberechnung unter Berücksichtigung der Rohrreibungsverluste inklusive Filter- und Einbauverluste

5 Untersuchungsmethoden der lufthygienischen Messungen

Die Messstrategie und die Berücksichtigung von Randbedingungen während der Probenahmen erfolgen unter Beachtung der VDI-Richtlinie [VDI 4300], Blatt 1 (Dezember 1995).

Tabelle 46 Eingesetzte Untersuchungsmethoden zur Bestimmung des lufthygienischen Profils an der L-EWT-Versuchsanlage

Erfassungsbereich	Untersuchungsmethode
Schimmelpilzsporen	Die Pilzsporen werden auf spezifischen Nährböden (Czapek- und Malzextraktagar) sedimentiert und nach einer Inkubationszeit mikrobiologisch analysiert. Nach 14-tägiger Bebrütung bei 22 °C wurden die Pilzkolonien auf den Nährböden bestimmt und quantifiziert.
MVOC	Vor Ort wurden die flüchtigen org. Verbindungen an ein Trägermaterial (Aktivkohle) adsorbiert und im Labor unter definierten Bedingungen desorbiert. Es erfolgte eine gaschromatographische Trennung und massenspektrometrische Charakterisierung der adsorbierten Substanzen.
Bakterielle Keime	Die bakteriellen Keime wurden auf spezifischen Nährböden (PCA-agar) sedimentiert und nach einer Inkubationszeit mikrobiologisch analysiert. Nach 5-tägiger Bebrütung bei 35 °C wurden die Keimkolonien auf den Nährböden quantifiziert. Referenzwerte aus der Literatur sind †: sehr gering < 50 KBE/m³ gering 50 - 100 KBE/m³ mittel 100 - 500 KBE/m³ hoch 500 - 2000 KBE/m³ sehr hoch > 2000 KBE/m³ *European Collaborative Action: Indoor air quality & its impact on man. Report No. 12: Biological Particles in Indoor Environment
Legionellen	Die bakteriellen Keime wurden auf legionellaspezifischen Nährböden (BCYE-agar) sedimentiert und nach einer Inkubationszeit mikrobiologisch analysiert. Nach 5-tägiger Bebrütung bei 35 °C wurden die Keimkolonien auf den Nährböden legionellaselektiv untersucht.
Phthalate (Weichmacher)	Elution des Probenahmeröhrchens mit Diethylether, Analyse mit Kapillargaschromatographie und Massenspektrometer; quantitative Bestimmung der Zielsubstanzen mit internem Standard und Vergleichsgemisch.

Partikel und Faserförmi- ge anorganische und organische Partikeln	Rasterelektronenmikroskopie mit energiedispersiver Röntgenmikro-analyse (REM/EDXA) nach VDI-Richtlinie 3492, Blatt 2 (Juni 1994) zum Nachweis von anorganischen Fasern mit der Länge L: $5~\mu\text{m} \le L \le 100~\mu\text{m}$ und dem Durchmesser D: $0.2~\mu\text{m} \le D < 3~\mu\text{m}$ sowie L/D $\ge 3/1$. Zur Berechnung der Raumluftkonzentration an Asbestfasern wird gemäß VDI-Richtlinie nur die Faserlängenklasse 2 herangezogen. Die ausgewertete Filterfläche beträgt jeweils $1~\text{mm}^2$.
Schwebstaubgehalt	Die Probenahme und Auswertung erfolgte nach VDI-Richtlinie 2463 (Blatt 8; Messen von Partikeln - Messen von Massenkonzentration (Immission), Basisverfahren für den Vergleich von nichtfraktionierenden Verfahren). Nach diesem Verfahren werden die in der Luft dispergierten Partikel auf einem Filter gesammelt und danach gravimetrisch bestimmt. Der eingesetzte Quarzfaserfiltertyp garantiert einen Abscheidegrad > 99,5 % nach DIN 24 184.
Partikelgrößen- Verteilung	Die Erfassung der absoluten Partikelzahlen und die Klassifizierung der Partikelgrößen erfolgte mit einem Laser-Schwebstaubmonitor der Fa. Malvern nach dem Laserstreulichtverfahren

Zuzüglich zu den selbst durchgeführten Messungen zur Bestimmung der Auswirkungen von L-EWT auf die Zuluftqualität wurden von anderen Autoren weitere Untersuchungen durchgeführt. Zum einen waren das vergleichenden Untersuchungen [Flückiger] [Schneiders] zum anderen lagen einzelne Berichte über die hygienischen Bedingungen an L-EWT-Systemen vor. Die ausgewerteten Untersuchungen sind in Tabelle 47 zusammengefasst. Die Ergebnisse implizieren, dass aus lufthygienischer Sicht der Betrieb von L-EWT bei gewissenhafter Planung unproblematisch ist. Die allgemeinen, bei Lüftungsanlagen angewandten Regeln sind beim Bau, Betrieb und Unterhalt von L-EWT zu berücksichtigen.

Die Ergebnisse zeigen, dass die L-EWT-Austrittsluft in fast allen Fällen eine deutlich Reduktion der Pilzsporenkonzentration der Außenluft zeigte. Lediglich Penicillum und Aspergillus zeigten nach den L-EWT-Rohren vor den Filtern einiger Einfamilienhäusern höhere Konzen-trationen als in der Außenluft [Flückinger].

Eine Untersuchung am L-EWT des SIJ in Jülich zeigt nach der Inbetriebnahme im September 1999 eine um ca. den Faktor 2 erhöhte Konzentration von Pilzsporen und MVOC am L-EWT-Austritt gegenüber der Außenluft. Anhand der aufgenommenen Daten kann zwar nicht von einer gesundheitlich relevanten Schimmelpilzbelastung ausgegangen werden, eine Ver-schmutzung mit biologischen Materialien bzw. eine Verkeimung des Rohres kann jedoch nicht ausgeschlossen werden.

Tabelle 47 Ergebnisse aus den hygienischen Untersuchungen verschiedener L-EWT-Anlagen

Staub			Ą.,Ą			кA	к,я		k,A.	Reduktion des Staubgehaltes in der Zuluft gegenüber der Außenluft	Kein signifikanter Staubeintrag in die Raumluft bei Nutzng des L-EWT	k.A
Chemische Schadstoffe			Ą.			К. А		Sehr niedrige Radongehalte in der Raumluft (Anreicherung durch die Betonrohre dadurch auszuschließen)	1996: keine Zunahme von Phthlaten (Weichmachem) in der Zuluft gegenüber der Außenluft	Sowohl am Anfang als auch am Ende der L-Büff Strecke kein Nachweis von VOC ⁹ (Bestimmungsgrenze 1 μg/m²)	k.A	
Mikrobielle Schadstoffe	Pilze	Zusammenfassende Untersuchungen	Kein Unterschied der Qualität der Austrittsluft zwischen Beton und Kunststoffrohren festgestellt, Reduktion der Keinzahlen in Kleineren Systemen (Enfamilienhäusem) fiel	Semiger ags as in groweren Amagen. Die nach dem L-BMT eingebauten Filter führten in allen Ahlagen zu einer Abnahme der Bakterien und Pilzsporenkonzentration geg. Der Hintergrundkonzentration.	Filterqualität beeinflusste stark die Konzentration der Plizsporen in der Zuluft im Gegensatz zur Bakterienkonzentration	In den meisten Anlagen tiefere Keimkonzentration am Ende des L-EWT, in Anlagen für Enfamilienhäuser gelegentlich erhöhte Konzentrationen	k.A.	Einzelne L-EWT-Anlagen	Innenraumgehalt an Pilzsporen deutlich niedriger als in der Außenluft	Reduktion von Pilzsporen in der Zuluft gegenüber der Außenluft, keinen Zunahme der MAOCs gegenüber der Außenluft	Schimmelpilzsporen und MVOC² haben höhere Werte (um ca. Faktor 2) nach Passage des L-EWT	Die Gebäude zuluft enthält keine oder nur sehr geninge Schimmelpil zsporenkon zentrationen, Im April Mai höchste Pilzkonzentrationen am Ende des L-EDVT, dagegen im Juni höchste Konzentrationen in der Außenluft = eine Schimmelpilzennissionsquelle bedingt durch Taupunktunterschreitungen ist nicht auszuschließen
	Bakterien	znz	Kein Unterschied der Ku Reduktion der Keimzahler	Die nach dem L-EWT ein Abnahme der Bakte	Filterqualität beeinflusste s im Geger	In fast allen Fällen Reduktion der Bakterien in den L-EWT-Rohren	Reduktion der Keimzahlen um mehrals 90% gegenüber der Außenluft		k.A.	Reduktion der Bakterien in der Zuluft gegenüber der Außenluft, keine Legionellen nachweisbar	Kolonienzahl nach Passage des L-EWT gering niedriger als am Entritt	Bakterien liegen im Normalbereich und stellen keinerlei Gesundheitliche Gesundheitliche
Messungen			Frühling, Sommer, Winter, Herbst 1996 (Die L-EWT- Anlagen waren Messung oa. 2-7 Jahre in Betrieb)				1991 und 1992 (Wiederholungs- messung)		September 1999 (nach einem Jahr Betriebszeit)	Messung Juli 1996 und 1998	September 1999 (Inbetriebnahme)	Januar 1993 bis April 1994
System			12 L-BWT-Anlagen (davon 4 für Enfamilien- und 2 für Mehrfamilienhäuser, 6 für Gebäude mit diverser Nutzung) 8 Anlagen, Xunststoffrohre, 3 Anlagen, Zementrohre				2 Enfamilienbäuser mit L-EWT (PVC bzw. glattes Winkelfalzohr) in ländlicher Umoebung		Rohrregister L'EWT, Beton	Rohmegister-L-BWT, 12 KG-Rohne (PVC), max. 3600 m³/h	Enzellrohr, Beton	4 Häuser mit Register L-EWT, 4 Rohre, max 180 m³h
			Nach Flückinger ¹ (Institut für	rygrene und Arbeitsphysiolo gie, ETH Zürich)		Nach Schneiders ' (Medizinische Fakultät, RWTH Aachen)		L-EWT auf dem Gelände der Fa. Wagner Solar	L-EWT auf dem Gelände des DLR ¹	L-EWT auf dem Gelände des S.D., Jülich	L-EWT des Passivhau Kranichstein*	

Schneiders, Thora: Zur hygienischen Luftqualität in Wohngebäuden bei der Konditionierung der Zuluft mittels Edwärmetauscher. Dissentation. Medizinische Fakultät der RWTH Aachen, 1994

MAXOC - Mikrobiell produzierte organische Verbindungen
 Aromatische Verbindungen (u.a. Aromatische Kohlenwasserstoffe, Alkane, Terpenen, Ester, Ketone, Alkohole, Adehyde)
 Feist, Wolfgang(Hrsg.) Passivhausbericht Nr.10: Luftqualität im Pssivhaus. Abschlußbericht an das Hessische Mnisterium für Umwelt, Energie und Bundesangelegenheiten (HMUB), Institut Wohnen und Umwelt, Darmstadt, 1994

Auch bei Bakterien zeigten Messungen in fast allen untersuchten L-EWT-Systemen, eine Abnahme der Konzentration [Flückinger]. Generell besteht ein Unterschied zwischen Groß-anlagen und L-EWT für Einfamilienhäuser. Die Reduktion der Keimzahlen im Erdregister fällt für Einfamilienhäuser deutlich geringer aus, als für große Anlagen. Es konnten keine eindeutigen Unterschiede der Bakterien- und Pilzreduktion bei Beton und Kunststoffrohren festgestellt werden.

Untersuchungen über chemische Schadstoffe aus der Rohrwand und anderen Bauteilen wurden für Phonole und VOCs durchgeführt. Das L-EWT-Versuchsregister verwendet Rohrmaterial aus PVC. Die Messungen 1996 zeigten, dass keine erhöhte Konzentration von Diisobutylphthalat und Di-n-Butylphthalat vorlag. Am L-EWT in Jülich wurden Messungen von VOC durchgeführt. Auch hier konnten keine VOC oberhalb der Nachweisgrenze fest-gestellt werden.

Für Belastungen der Luft aus L-EWT durch Radon liegen bisher nur wenige Erkenntnisse vor. Eine Messung wurde für die Raumluft des Gebäudes der Fa. Wagner-Solar durchgeführt, das über ein L-EWT belüftet wird. Die Raumluft zeige sehr niedrige Radongehalte von 6-11 Bq/m³. Eine Anreicherung von Radon durch die Betonrohre konnte dadurch ausge-schlossen werden. Bei der Bewertung dieses Ergebnis ist zu beachten, das auch für das Grundstück keine erhöhten Radonwerte im Boden vorlagen (siehe auch [BfS]).

6 Literaturverzeichnis

A

[Ahmed]

Ahmed, A.: Simulation of simoultaneus heat and moisture transfer in soils heated by buried pipes, Ph.D. Dissertation, Columbus, USA: The Ohio State University, 1980

[AGÖF]

N.N.: Energie sparen, Schadstoffe vermeidenGesundes Bauen und Wohnen, Fachkongreß "Ökologische Gebäudesanierung II", Arbeitsgemeinschaft Ökologischer Forschungsinstitute (AGÖF) Berlin, November 1993

[Albers]

Albers, K.-J.; Trümper, H.; Hain, K.: **Erdwärmetauscher.** Ergebnisbericht zum Forschungsauftrag BI5-800 189-108 des Bundesministeriums für Raumordnung, Bauwesen und Städtebau, Univ. Dortmund, FG Technische Gebäudeausrüstung, IRB-Verlag, Dortmund, 1991

[Allgeier]

Allgaier, M.: Planungs- und Ausführungshinweise für Wohnungslüftungssysteme, Teil 3; IKZ-Haustechnik, Ausgabe 12/2000

[AMEV]

Arbeitskreis Maschinen- und Elektrotechnik staatlicher und kommunaler Verwaltungen, http://www.amev.belwue.de/

[ASR]

Arbeitsstättenverordnung und Arbeitsstättenrichtlinien - ein Wegweiser für Arbeitgeber und Beschäftigte, Bayerisches Staatsministeriums für Gesundheit, Ernährung und Verbraucherschutz, München 2001

[Baehr I]

Baehr, H.-D.: Thermodynamik: eine Einführung in die Grundlagen und ihre technischen Anwendungen, 8., Aufl. Berlin [u.a.]: Springer, 1992

[Baehr II]

Baehr, H.-D., Stephan, K.: Wärme und Stoffübertragung, Springer, Heidelberg 1994

[Bansal]

Bansal, K.N.; Hauser, G.; Minke, G.: Passive Building Design, A Handbook of Natural Climatic Control, Elsevier Science Verlag, Amsterdam 1994

[Baumgartner]

Baumgartner, Th.: **Erdwärmenutzung für die Raumklimatisierung**, Rechenmodell für Luft /Erdregister; Neff-Projekt 390, Dübendorf, Schweiz, 1992

[Benkert I]

Benkert, St., Heidt, F.D.: Validierung des Programms 'Graphische Auslegung von ErdwärmeAustauschern GAEA' mit Hilfe von Messdaten im Rahmen des Verbundprojekts 'Luft-/Erdwärmetauscher' der AG Solar NRW, Abschlussbericht zum Projekt, Fachgebiet Bauphysik & Solarenergie, Universität-GH Siegen, Februar 2000

[Benkert II]

Benkert, St., Heidt, F.D.:

Designing Earth Heat Exchangers -Validation of the software GAEA. Proceedings World Renewable Energy Congress VI, July 1-7, 2000, Brighton, UK, A.A.M. Sayigh (ed.), Part III, pp. 1818-1821. Elsevier Science Ltd, The Blvd, Langford Lane, Kidlington, Oxford OX5 1GB, UK.

[BfS]

Bundesamt für Strahlenschutz: **Die radiologische Situation in Bergbaugebieten Sachsens, Sachsen-Anhalts und Thüringens**, Infostelle Schlema des BfS, Schlema 2000

[BIA]

N.N.: Innenraumluftqualität, BIA-Report 2/95, Zusammenfassung der Vorträge zum Thema gehalten am 8. und 9. Dezember 1993 in St. Augustin, HVBG Hauptverband der gewerblichen Berufsgenossenschaften Sankt Augustin, April 1995

[BINE]

Bine Projekt-Info 02/2000, **Raumluftkonditionierung mit Erdwärmetauschern**, Fachinformationszentrum Karlsruhe, Mai 2000

[Blackwell]

Blackwell, J.H.: A transient-flow method for determination of thermal constants of insulating materials in bulk, Part 1 - Theory, J. Appl. Phys., 25, 137-144., 1954

[Blümel]

Blümel, K.; Hollan, E., Kähler, M. Peter, R.: Entwicklung von Testreferenzjahren (TRY) für Klimaregionen der Bundesrepublik Deutschland, Institut für Geophysikalische Wissenschaften der FU Berlin, BMFT, Forschungsbericht T86-051, FIZ Karlsruhe, Karlsruhe 1986

[Boden]

Bodenuntersuchungen im Bereich des Bauvorhabens Linder Höhe in Köln-Porz, Erläuterungsbericht zur Baugrundbeurteilung und Gründungsberatung des Ing.-Büros, Dr. Tillmanns & Partner GmbH, Auftrag vom 7.10.1992, Düsseldorf, Oktober 92

[Borowietz]

Borowietz, M.: **Dynamische Simulation von Erdwärmetauschern mit TRNSYS**, Diplomarbeit Technische Universität Berlin, Studiengang Energie- und Verfahrenstechnik, DLR Köln 1999

[Brauer]

Brauer, H.: Berechnung der Wärmeverluste von im Erdreich verlegten Rohrleitungen; Energie 15 (1963) 9, S. 354 - 365

[Carslaw]

Carslaw, H.S., und Jaeger, J.C.: Conduction of Heat in Solids, Oxford University Press, Oxford 1959

[Chohfi]

Chohfi, R.E.: Computer Programm to Simulate the Performance of Earth Cooling Tubes, Graduate School of Architecture and Urban Planning, University of California, 13th national passive solar conference, Cambridge, MA, USA, ASES 1988

[Cube I]

Cube v.H: Die Projektierung von erdverlegten Rohrschlangen für Heizwärmepumpen, KI Luft- und Kälteingenieur Nr. 5 (1977) 6, S.217-222, Hüthig-Verlag, Heidelberg 1977

[Cube II]

Cube v., H.L.; Ludwig, E; Sattleger, J. Rhode, J.: Erarbeitung eines Optimierungsverfahrens für die Auslegung von Erdbodenrohrschlangen als Wärmequelle für Wärmepumpen. Forschungsbericht T80 - 121, Bonn, BMFT, 1980

D

[Damjanov]

Damjanov,B.: Experimentelle Analyse der Lüftungsanlage mit Wärmerückgewinnung im Energieautarken Solarhaus, Freiburg. Diplomarbeit, Hochschule für Technik + Wirtschaft, Offenburg. Angefertigt im Fraunhofer-Institut für Solare Energiesysteme, Freiburg, Abteilung Thermische und Optische Systeme (TOS), Freiburg, 1994

[Dibowski I]

Dibowski, G.: Bau und messtechnische Untersuchung eines Laborgebäudes als Niedrigenergiehaus, Abschlussbericht der ersten Projektphase (1991 - 1995), DLR, Hauptabteilung Energietechnik, im Auftrag der Arbeitsgemeinschaft Solar NRW, Köln 1996

[Dibowski II]

Dibowski, G.: **NESA-Ausstattung und Meßkonzept für das Sonnenofen-Laborgebäude,** Deutsche Forschungs-anstalt für Luft- und Raumfahrt (DLR), HA Energietechnik, Köln, in: F.D. Heidt (Hrsg.): Niedrigenergie und Solar-Architektur (NESA), VDI-Fortschrittsberichte, Reihe 6, Nr.319, Energietechnik, VDI-Verlag GmbH, Düsseldorf 1995, S.30 - 42

[Dibowski III]

Dibowski, G.: Energieeinsparung und Kühlung durch solare Systemtechnik bei nach Niedrigenergiestandard gebauten Büro- und Betriebsbauten; Deutsches Zentrum für Luft- und Raumfahrt (DLR), HA Energietechnik, Köln, in: F.D. Heidt (Hrsg.): Bestandsaufnahmen zur Niedrigenergie- und Solar-Architektur, VDI-Fortschritts-berichte, Reihe 4, Nr. 139, Bauingenieurwesen, VDI-Verlag GmbH, Düsseldorf 1997, S.34 - 40

[Dibowski IV]

Dibowski, G.: **Oberflächennahe thermische Nutzung des Untergrundes.** Fachseminar Oberflächennahe Geothermie, Freising, 21./22. Februar 2001, Vortrag und Tagungsband, S. 155-167, OTTI - Energie-Kolleg, Regensburg 2001

[Dibowski V]

Dibowski, G.: **Projektierung von Luft-Erdwärmetauschern (L-EWT), der Planungsleitfaden der AG Solar NRW**, Fachseminar Oberflächennahe Geothermie, Garching, 19./20. Februar 2002, Vortrag und Tagungsband S. 213-223, , OTTI Energie-Kolleg, Regensburg 2002

[Dibowski VI]

Dibowski, G.: Thermische Nutzung von Solarenergie im Niedertemperaturbereich, Hans-Böckler-Stiftung, Köln 1996, (1996)

[Dibowski VII]

Dibowski, G.: Kurzbericht vom Start-Meeting im Verbundprojekt Luft-/Erdwärmetauscher, Das EWT-Verbundprojekt. START-Meeting des EWT-Verbundprojektes, DLR, Köln, 26. November 1998, DLR, (1998)

[Dibowski VIII]

Dibowski, G.: **Aufgaben und Ziele des Bodenfeuchtesymposiums,** Bodenfeuchtesymposium im Rahmen des EWT-Verbundprojektes der Arbeitsgemeinschaft Solar NRW, Jülich, 29.+30.09.1999, DLR, Solar-Institut-Jülich, 1999

[Dibowski IX]

Dibowski, G.: **Abschlußbericht an die AG Solar NRW**, Bau und meßtechnische Untersuchung eines Laborgebäudes als Niedrigenergiehaus; DLR, Köln, Dezember 1996

[Dibowski X]

Dibowski, G.: Solarthermische Raumkühlung am Beispiel von Luft-/Erdwärmetauschern EWT Fortbildungsveranstaltung der Carl-Duisberg-Gesellschaft am Solar-Institut, Jülich, SIJ, "Solare Energiesysteme", Jülich, 23.06.1999, FH Aachen / Solar-Institut, Jülich, SIJ, (1999)

[Dibowski XI]

Dibowski, G.: The Earth-Air Heat-Exchanger of the DLR, Cologne / Measuring Results and Experiences. International Seminar on Environmental Sustainibility Through Architecture and Energy Management in Buildings, Neu Delhi, 28.04.1999, Indian Institute of Technology IIT, Neu Delhi, (1999)

[Dibowski XII]

Dibowski, G.: **Erdreichwärmetauscher,** Vortrag im Rahmen der 15. Sommerschule, Regenerative Energie an der FH Aachen, Solar-Institut Jülich, 7. September 2000

[Dibowski XIII]

Dibowski, G.: Leistungsbeispiele von Luft-/Erdwärmetauschern (L-EWT) zur Luftvorwärmung und Raum-kühlung, 6. Geothermische Fachtagung, Akademie Mont Cenis, Herne, 18.-19.10.2000; Neue Entwicklungen, Perspektiven, Herne 2000

[Dibo HoWo]

Dibowski, G.; Hovermann, Ch.; Wortmann, R.: **Die Erdwärmetauscher im EWT-Verbund-projekt**, 4.Passivhaus Tagung, 10. bis 11. März 2000, Kassel, Tagungsband, Darmstadt 2000

[Dibo+Ritt]

Dibowski, G.; Rittenhofer, K.: Über die Problematik der Bestimmung thermischer Erdreichparameter für die Projektierung von Luft-/Erdwärmetauschern (EWT), HLH, Zeitschrift des VDI, Ausgabe 5/2000, Springer-VDI-Verlag, Düsseldorf 2000

[DIN EN 1610]

DIN EN 1610 Technische Regeln für die Bausausführung von Abwasserleitungen und -kanälen, Beuth-Verlag, Berlin 1997

[DIN 1946-2]

DİN 1946, Teil 2: Raumlufttechnik, Gesundheitstechnische Anforderungen (VDI-Lüftungsregeln), Beuth Verlag, Berlin 1994

[DIN 4021]

DIN 4021, Baugrund; Aufschluss durch Schürfe und Bohrungen sowie Entnahme von Proben, Beuth Verlag GmbH, Berlin 1990

[DIN 4022]

DIN 4022-1, Baugrund und Grundwasser; Benennen und Beschreiben von Boden und Fels, Ausgabe:1987-09, Beuth Verlag GmbH, Berlin

[DIN V 4108-4]

DIN V 4108-4 Wärmeschutz und Energie-Einsparung in Gebäuden, Teil 4: Wärme- und feuchteschutztechnische Bemessungswerte, Beuth-Verlag, Berlin 2002

[DIN V 4108-6]

DIN V 4108-6 Wärmeschutz und Energie-Einsparung in Gebäuden, Teil 6: Berechnung des Jahresheizenergiebedarfs, Beuth-Verlag, Berlin 2000

[DIN V 4701]

DIN V 4701: DIN 4701 Regeln für die Berechnung des Wärmebedarfs von Gebäuden, Deutsches Institut für Normung, Beuth-Verlag, Berlin 1997

[DIN V 4701-10]

DIN V 4701-10: Energetische Bewertung heiz- und raumlufttechnischer Anlagen, Teil 10: Heizung, Trinkwasser, Lüftung, Beuth-Verlag, Berlin 2001

[DIN 4710]

DIN 4710: Meteorologische Daten zur Berechnung des Energieverbrauches von heiz- und raumlufttechnischen Anlagen, Beuth-Verlag, Berlin 1982

[DIN 16928]

DIN 16928: Rohrleitungen aus thermoplastischen Kunststoffen; -verbindungen; Rohrleitungsteile; Verlegung; Allg. Richtlinien 4.79 (ISO / TR 7024-1985) Beuth-Verlag, Berlin 1979

[DIN 18196]

DIN 18196 Erd- und Grundbau, Bodenklassifikation für bautechnische Zwecke, Beuth-Verlag, Berlin, Oktober 1988

[DIN 19534]

DIN 19534: Rohre und Formstücke aus weichmacherfreiem Polyvinylchlorid (PVC-U) mit Steckmuffe für Abwasserkanäle und -leitungen, Beuth-Verlag, Berlin 2000

[DIN 25706-1]

DIN 25706-1: Passive Radonmessung, Teil 1: Kernspurmessverfahren; Nov 94

[Dreuw]

Dreuw, M.; Schmidt, M.: **Erdreichwärmetauscher, Teil 2**, Auslegungsprogramme für EWT, Vergleich der Programme 'GAEA' und 'PH-Luft', Solar-Institut-Jülich, FH Aachen 2000

[Dubbel]

Beitz, W., Grote, K.-H.: Dubbel, Taschenbuch Maschinenbau, 19.Auflage, Berlin 1997

[Duffie]

Duffie, J.; Beckmann, W.:Solar Engineering of Thermal Processes, New York: John Wiley & Sons, 1991

[Duffie II]

Beckmann, W.A.; Duffie J.A. et. al.: **TRNSYS 14.2 – Handbook**. Solar Energy Laboratory, University of Wisconsin, Madison, Wi, USA: Solar Energy Lab, 1996

[DVS 2207]

DVS 2207: Schweißen von thermoplastischen Kunststoffen, Heizelementschweißen von Rohren, Rohrleitungsteilen und Tafeln aus PE-H, Teil 1, Hameln 1995

[ECO1]

ECO Luftqualität und Raumklima: **Untersuchungen zur lufthygienischen Bewertung des Erdwärmetauschers im Laborgebäude des Sonnenofens**, im Auftrag des Deutschen Zentrum für Luft und Raumfahrt, Köln, 1996

[ECO2]

ECO Luftqualität und Raumklima: **Untersuchungen zur Lufthygienischen Bewertung des Erdwärmetauschers im Laborgebäude des Sonnenofens**, im Auftrag des Deutschen Zentrum für Luft und Raumfahrt, Köln, 1998

[Eckert]

Eckert, E. R. G. The Ground used as Energy Source, Energy Sink or for Energy Storage Energy 1 (1976), S. 315 - 323

[Evers]

Evers, M.: Auslegung und Wirtschaftlichkeitsbetrachtung eines Luftkanal-Erdwärmeübertragers zur Zuluftkonditionierung, am Beispiel eines Vortragssaales, Diplomarbeit FH Köln, Versorgungstechnik TGA, Köln WS 1998/99

[Erbas]

Erbas, K.: Bestimmung der Wärmeleitfähigkeit von Festkörpern mit einer Halbraum-Linienquellen-Apparatur, unveröffentlichte Diplomarbeit, Institut für Angewandte Geophysik, Technische Universität Berlin 1985

F

[FHAaBaubetrieb]

http://www.baubetrieb.fh-aachen.de

[Feist I]

Feist, W.: **Passivhäuser in Mitteleuropa**, Dissertation, Universität Gesamthochschule Kassel, 1993

[Feist II]

Feist und Jäkel TV-Untersuchungen des Erdwärmetauschers im Passivhaus Darmstadt Kranichstein; IWU GmbH Darmstadt, 1994

[Fischer und Lindauer]

Fischer, Lindauer: **Experimentelle Voruntersuchungen eines Erdwärmetauschers zur Luftvorwärmung bzw. –kühlung**, Bericht des Fraunhofer-Institutes für Bauphysik, EB-28, 1990

[Fischer und Stiehl]

Fischer, N.; Stiehl, N: Verfahren zur Kühlung und Vorwärmung der Luft mit Hilfe der Erdwärme; Patentschrift Nr. 121, Berlin, Kaiserliches Patentamt 1877

[Flückinger]

Flückiger, N., Wanner, N., Lüthy, N.: Mikrobielle Untersuchungen von Luftansaug-Erdregistern, ETH Zürich, Februar 1997 [1]

[GAEA]

GAEA: Graphische Auslegung von ErdwärmeAustauschern, Fachgebiet Bauphysik & Solararchitektur, EWT-Verbundprojekt, AG-Solar NRW, Universität-GH Siegen 1999 http://nesa1.uni-siegen.de/softlab/gaea.htm

[Gerber]

Gerber, A., Pfafferott, J., Dibowski, G.: **Erdreichwärmetauscher: Modellierung, Auslegung und Betriebsverhalten**; Tagungsband der achten Jahrestagung des Forschungsverbundes Sonnenenergie vom 10. bis 11. September 1997 zum Thema Solare Gebäudekühlung in Hameln. Köln 1997

[Ghazi]

Ghazi Wakili, K.; Frank, Th.; Baumgartner, Th.: **Erdwärmenutzung für die Raumklimatisierung**, EMPA, Abt. Bauphysik, Projekt Schwerzenbacher Hof, Dübendorf, Schweiz 1992

[Giardina]

Giardina, J.: Evaluation of Ground Coupled Heat Pumps For The State of Wisconsin, Dissertation, Master of Science, University of Wisconsin-Madison, 1995

[Glück I]

Glück, B.: **Wärmeübertragung,** Bausteine der Heizungstechnik, Berechnung, Software, Wärmeabgabe von Raumheizflächen und Rohren, VEB Verlag für Bauwesen, 1. Auflage, Berlin 1989

[Glück II]

Glück, B.: **Zustands- und Stoffwerte Wasser-Dampf-Luft**, VerbrennungsrechnungVEB-Verlag für Bauwesen, Berlin, 1987

[Grigull]

Grigull, U., Sandner, H.: **Wärmeleitung,** Nachdruck der ersten Auflage, Springer Verlag, Berlin, Heidelberg 1986

[Hauser I]

Hauser,G.; Rechnerische Vorbestimmung des Wärmeverhaltens großer Bauten, Dissertation, Universität Stuttgart 1977

[Hauser II]

Hauser, G.; Otto, F.: **Erdwärmeauscher,** Abschlussbericht ,Forschungsauftrag des Bundesministeriums für Raumordnung, Bauwesen und Städtebau, BI-800189-108, Kassel 1991

[Hausladen]

Hausladen, G. Intelligente Architektur, AIT 24 Spezialausgabe, Stuttgart 2000

[Hausladen II]

Hausladen, G.: Innovative Gebäude-, Technik- und Energiekonzepte, München November 2000 [1]

[Heliograph]

N.N.: **Parameterstudie zur Dimensionierung von Erdwärmetauschern;** Firma Heliograph, Ingenieurgesellschaft für rationelle Energieverwendung mbH, Aachen, 1994

[Herkert]

Herkert, J.: Entwicklung einer standardisierten Projektcharakteristik für Luft-/Erdwärmetauscher L-EWT, Diplomarbeit DLR (G. Dibowski), FB Versorgungstechnik, TG, FH Köln, 2001

[Honarmand]

Honarmand, H.: Bohrlochsonden zur Bestimmung der Wärmeleitfähigkeit in größeren Tiefen, Dissertation., Verlag für Wissenschaft und Forschung, Berlin 1992

[Hourmanesh I]

Hourmanesh, M.; Hourmanesh, R.; Elmer, D.B.: Compatability of Passive Systems, Essergetics, Inc., P.O. Box F-8, C.S., 77844 Texas, 1978

[Hourmanesh II]

Hourmanesh, M.; Hourmanesh, R.; Elmer. D.B.: **Earth-Air Heat Exchanger**. Solar Diversification, American Section of the Int. Solar Energy Society, Denver, CO, USA, 1978

[Huber]

Huber, A.; Müller, Ch.; Berchtold, O.: **Luftvorwärmung für Wärmepumpen in Erdregistern,** Phase 1, Kosten Nutzen Analyse, Schlussbericht Forschungsprogrammm Umgebungs- und Abwärme, Wärme-Kraft-Kopplung (UAW), Bundesamt für Energiewirtschaft der Schweiz, November 1996

[InterSolfo]

11. Internationales Sonnenforum Tagungsband Deutsche Gesellschaft für Sonnenforschung Solar Promotion GmbH.- Verlag München 1998

J

[Jäger]

Jäger, F. et. al.: Überprüfung eines Erdwärmespeichers, Forschungsbericht T81200, Bonn, BmFT, 1981

K

[Kammel]

Kammel, D.W.: Earth-Air Heat Exchanger. (Dissertation). University of Wisconsin, USA, 1985

[Kasten und Czeplak]

Kasten, F., Czeplak, G.: Solar terrestial radiation dependent on the amount and type of clouds, Solar energy Vol.24, 1980

[Keller]

Keller, G.: **The Radon Diffusion Length as a Criterion for the Radon Tightness**, Prof. G. Keller, B. Hoffmann; Institute of Biophysics, University of Saarland, Universitätsklinik, 66421 Homburg-Saar

[Kennedy]

Kennedy, M., Großmann, N., Schütze, T.: **Erfahrungen mit innovativen Erdwärmetauscher Lüftungsanlagen**, Universität Hannover/ Fachbereich Architektur, Hannover März 2001 [1]

[Kersten]

Kersten, M.S.: **Thermal Properties of Soils,** Institute of Technolgie Bulletin No. 28, Minneapolis, University of Minnesota, Experiment Station, 221 pp, Minnesota 1949

[Kleemann]

Kleemann, M.; Meliß, M.: Regenerative Energiequellen, 2. Auflage, Springer Verlag, Berlin, Heidelberg 1993

[Klugescheid]

Klugescheid, M.:

Numerische Modellierung des Energieumsatzes an der Grenzfläche Boden/Luft, unveröffentlichte Diplomarbeit, Justus-Liebig-Universität Gießen, Institiut für Angewandte Geowissenschaften, Prof. K. Knoblich, Gießen 1989

[Knoblich]

Knoblich, K., Sanner, B., Klugescheid, M.:Beeinflussung der Temperaturen im oberflächennahen Erdreich durch Solarstrahlung und Auswirkungen auf Erdwärmespeicher und erdgekoppelte Wärmepumpen, Universität Gießen, Internationales Sonnenforum, Tagungsbericht, Band 3, S.1711-1716, DGS, Frankfurt 1990

[Krellmann]

Krellmann, Hartmut; Belz, Stephan: **Auslegung und Untersuchung eines Erdreich- registers für die Lüftungsanlage des Neubaus "Solar-Institut Jülich"**, **der** FH Aachen,
Diplom-Arbeit MMaschinenbau, Energie- und Umweltschutztechnik, Aachen, Jülich 1996

[Kristiansen]

Kristiansen, J.I.: The transient cylindrical probe method for determination of thermal parameters of earth materials, Ph.D. Thesis, Geoskrifter, 18, Department of Geology, Aarhus University 1982

[Kusuda und Achenbach]

Kusuda, T. und Achenbach, P. R.: Earth Temperature and Thermal Diffusivity at Selected Stations in the United States, ASHRAE Trans.. Vol. 71, Part 1, 1965

[Labs I]

Labs, K.: **Earth Coupling**. Passive Cooling, Massachusetts Institute of Technology MIT, Cambridge, USA, Editors(s): Cook,J., The MIT Press, S.197-346, Cambridge, 1989

[Labs II]

Labs, K.; Harrington, K.: Comparison of Ground and Above-Ground Climates for Identifying Appropriate Cooling Strategies. 5th National Passive Solar Conference, Amherst, MA, USA, 1980, Passive Cooling Applications Handbook, S. 189-216

[LEO]

N.N.; **Tatort LEO, Integriertes Planen und Bauen am Beispiel des Kölner Low Energy Office**, Herausgeber Energieagentur NRW, REN Impuls-Programm, Wuppertal 1995

[Lucas]

Vorlesungsskript Thermodynamik Universität Duisburg 1988

[Mayer]

Mayer, Laabs, Röber: **Erdwärmenutzung für die Raumklimatisierung von Gebäuden**, angewandt beim Stadttheater Heilbronn: Forschungsbericht T 85-168, Bonn, BMFT, 1985

[Mei]

Mei, V.C.: Horizontal Ground – Coil Heat Exchanger Theroretical and Experimental Analysis. Oakridge Natinal Laboratory/CON-193: Dezember 1986

[Meliß]

Kleemann, M.; Meliß, M.: Regenerative Energiequellen; 2. Auflage, Springer Verlag, Berlin, Heidelberg 1993

[Meteonorm]

Meteonorm 4.0, Global Meteorological Database for Solar Energy and Applied Meteorology, Fa. *Meteotest*, CH - 3012 Bern 2001

[Mihalakakou I]

Mihalakakou, G.; Santamouris, M.; Asimakopoulos, D.:[I] **Modelling the Thermal Performance of Earth-to-Air Heat Exchangers.** University of Athens, Solar Energy (Journal of Solar Energy Science and Engineering), USA, vol. 53(3), September 1994, S.301-305

[Mihalakakou II]

Mihalakakou, G. und Santamouris, M.:On the application of the energy balance equation to predict ground temperature profiles, Solar Energy (1997) Vol. 60, No. 3/4: S. 181-190

[Mihalakakou III]

Mihalakakou, G.; Santamouris, M.; Asimakopoulos, D.; Tselepidaki,I:[IV] Parametric Prediction of the Buried Pipes Cooling Potential for Passive Cooling Applications. University of Dublin, Energy Research School, Ireland, University of Athens Physics Department, Laboratory of Meteorology, Athens, Greece, Solar Energy Vol. 55, No.3, S.163-173, 1995

[MihalakakoulV]

Mihalakakou, G.; Santamouris, M.; Asimakopoulos, D.; Papanikolaou, N.:[II], Impact of Ground Cover on the Efficiencies of Earth-to-Air Heat Exchangers. University of Athens, Dept. of Applied Physics, Greece, Applied Energy, United Kingdom, vol.48(1), 1994, S.19-32

[Mihalakakou V]

Mihalakakou, G.; Santamouris, M.; Asimakopoulos, D.:[III]: **Modelling the Earth Temperature using Multiyear Measurements**. University of Athens, Greece, Energy and Buildings (Switzerland),1992, vol.19(1), S. 1-9

[Mihalakakou VI]

Mihalakakou, G; Santamouris, M; Asimakopoulos: **On the Performance of Earth Tube Systems** Laboratory of Meteorology, Physics Department, University of Athens, Greece 3RD European Conference Solar energy in architecture and urban planning Florence, Italy, 17-21 Mai 1993, P 215 - 217

[Miller]

Miller, H. (Hrsg.): **Passive-Cooling-Applications Handbook,** Passive-Cooling Workshop Amherst, Massachusetts 20.10.1980, Department of Energy, LBL Publication Nr. 375, Massachusetts, Oktober 1980

[Mrziglod]

Mrziglod-Hund, M.: Berechnungsverfahren für den Wärmeverlust erdreichberührter Teile, Dissertation an der Universität KaiserslauternD 386, 1995

[Murray]

Murray, T.:

The Analysis of an Experimental System to Temper Ventilation Air Using Soil Heat. (Dissertation). University of Manitoba; USA, National Library of Canada, Ottawa, 1987

N

[Neiß]

Neiß, Josef: Numerische Simulation des Wärme – und Feuchtetransports und der Eisbildung in Böden, Fortschrittsberichte der VDI Zeitschriften. VDI-Verlag, 1982

[Neugebauer]

Neugebauer, R.: Modellbildung und experimentelle Analyse der Wärmequelle Erdreich, Dissertation TU Karlsruhe, 1998

[Nikolic]

Nikolic, V.: **Bau und Energie**, Bauliche Maßnahmen zur verstärkten Sonnenenergienutzung im Wohnungsbau, Herausgeber: Der Bundesminister für Forschung und Technologie, Verlag TÜV Rheinland, Köln 1983

[OSU]

N.N.: Oklahoma State University: Closed Loop/ Ground-Source Heat Pump Systems - Installation Guide, International Ground-Source Heat Pump Association, Weatherford 1988

[Otto und Hauser]

Otto, F., Hauser, G.: **Erdwärmetauscher,** Abschlussbericht , Forschungsauftrag des Bundesministeriums für Raumordnung, Bauwesen und Städtebau, BI-800189-108, Baunatal 1991

[Paul]

Paul, E.: Der Einsatz von Erdwärmetauschern in Zusammenhang mit Wohnungslüftungsanlagen und Wärmerückgewinnung; PAUL Wärmerückgewinnungssysteme 08132 St. Mülsen

[Pearl]

Pearl, R.D.; Johnson, M.H.: **Earth/Air Heat Exchange Cooling Tubes: An Empirical Study**. Texas Technical University, College of Architecture, Lubbock, USA, 19th National Passive Solar Conference: Proceedings, Vol. 19, Boulder, CO, ASES, 1994, S.267-272

[Penman]

Penman, H.: **Vegetation and Hydrology**, Farnham: Royal Commonwealth Agricultural Bureaux, 1963

[Pfafferott]

Pfafferott, J.: Entwicklung eines Planungshilfsmittels zur Auslegung von Erdreichwärmetauschern, Diplomarbeit. Fraunhofer-Institut für Solare Energiesysteme, Abteilung Thermische und Optische Systeme, Freibung, Februar 1997

[Pfafferott II]

Pfafferott, J.: Gerber, A.,, Herkel, S.: **Erdwärmetauscher zur Luftkonditionierung**, gi-Gesundheitsingenieur 4/1998 – Haustechnik-Bauphysik-Umwelttechnik [1]

[Pfreundt]

Pfreundt, F.J.: Berechnung und Optimierung des Energiegewinns bei Anlagen zur Lufterwärmung mittels Erdkanal, Berichte der Arbeitsgruppe Technomathematik, Nr. 15, Universität Kaiserslautern, Fachbereich Mathematik, Kaiserslautern, September 1986

[PHLUFT]

PHLuft 1.0 - Dimensionierungssoftware von Passivhauslüftungsanlagen, Passivhaus-Institut Darmstadt, http://www.passivhaus-institut.de/

[Potter]

Potter, D.: Computational physics, John Wiley and Sons, London 1972

Q

R

[Recknagel]

Recknagel, H., Sprenger, E., Schramek, E.-R.: **Taschenbuch für Heizung und Klimatechnik**, 67. Auflage, Oldenbourg Verlag München, 1995

[Reinmuth]

Reinmuth, F.: Lufttechnische Prozesse, Verlag C.F. Müller, Karlsruhe 1996

[Reiß]

Reiß, J.: Schimmelpilze: Lebensweise, Nutzen, Schaden, Bekämpfung, Springer Verlag, 1991, Teil 1 und 2, B 13, W 19/20

[Remund]

Remund, S., Rütti, R.: **Validierung von Luft-Erdregister-Modellen**, Diplomarbeit, Laboratorium für Energiesysteme LES, Prof. P. Suter, Sommersemester 1996.

[Reuß]

Reuß, M.: Schulz,H.: Untersuchungen zur saisonalen Speicherung von Niedertemperaturwärme im Erdboden-Erdwärmespeicher. Vorhaben 0328616A, Bayr. Landesanstalt für Landtechnik Weihenstephan, Freising, 1992

[Rolle]

Rolle, K.C.; Moore, S.: An Effective Air-to-Air Heat Exchanger for Earth Shelter Homes. Dept of Philosophy, University of Wisconsin, USA. Proceedings of Solar 88, the 13th National Passive Solar Conference, American Solar Energy Society, New York, 1988, S.156-160

S

[Sanner I]

Sanner, B.: Erdgekoppelte Wärmepumpen, Geschichte, Systeme, Auslegung, Installation, FIZ, Karlsruhe, IZW-Berichte 2/92, Eggenstein-Leopoldshafen, November 1992

[Sanner II]

Sanner, B.; Lehmann, A.: **Erdgekoppelte Wärmepumpen,** Informationszentrum Wärmepumpen+Kältetechnik, IZW-Bericht 1/94, 2.Symposium, Dezember 1994

[Schachtschnabel]

Schachtschnabel, P.; Scheffer, F.: **Lehrbuch der Bodenkunde**, 14. Auflage, Ferdinand Enke Verlag, Stuttgart 1998 [32]

[Schick]

Schick, N; Schneider, N.: **Physik des Erdkörpers**, Ferdinand Enke Verlag, Stuttgart, 1973 /33/

[Schneiders]

Schneiders, T.: Zur hygienischen Luftqualität in Wohngebäuden bei der Konditionierung der Zuluft mittels Erdwärmetauscher, Dissertation. Medizinische Fakultät der RWTH Aachen, 1994

[Schulze-Kegel]

Schulze-Kegel, D. und Heidt. F. D.: **Energetische Diagnose von Gebäuden**, Endbericht Phase II, Universität-GH Siegen, FG Bauphysik u. Solarenergie, Projekt AG Solar NRW, (Förderkennzeichen 514-25313396), Siegen, Februar 2000

[Sedlbauer I]

Sedlbauer, K.; Lindauer, E.; Werner, H.: **Erdreich/Luftwärmetauscher zur Wohnungs-lüftung**. Fraunhofer-Institut für Bauphysik, Stuttgart, IBP-Bericht EB-37/1992 [34]

[Sedlbauer II]

Sedlbauer, K.; Luftkonditionierung mit einem Erdreich / Luft-Wärmetauscher, Diplomarbeit an der LMU München, Lehrstuhl Sizmann, München, 1991 [35]

[Senkpiel]

Senkpiel, K. & Ohgke, H.: Beurteilung der Schimmelpilz-Sporenkonzentration der Innenraumluft und ihre gesundheitliche Auswirkungen, Ges.-Ing. 113, 42-45, 1992

[Späte]

Späte, F., Werner, N., Radwer, N.: Solares Bauen in der Schweiz, Österreich und Deutschland NN [36]

[StaBu]

Statistisches Bundesamt, http://www.statistik-bund.de

[Stabu II]

Statistisches Bundesamt, **Arbeitsgemeinschaft Energiebilanzen**, **Vorläufige Primär- und Endenergieverbrauchszahlen 1994**, Alte und neue Bundesländer sowie für Gesamtdeutschland Stand Mai 1995, Berlin/ Essen 1996 [1]

[Start]

Kurzbericht vom Start-Meeting im Verbundprojekt Luft-Erdwärmetauscher, 26. Nov. 1998, DLR Köln 1999

[StLB]

Standardleistungsbuch für das Bauwesen StLB, Zeitvertragsarbeiten (Z), Leistungsbereich 706, Abwasserkanalarbeiten, OfD. Münster, Bundesministerium für Raumordnung, Bauwesen, und Städtebau, DIN Deutsches Institut für Normung. e.V. Münster 1996

Τ

[Tribusch]

Tributsch, H.: Solartechnische Pionierleistungen aus Naturvorbildern und tradioneller Architektur in 'das bauzentrum 14/99', Verlag Das Beispiel, Darmstadt 1999

[TRNSYS]

Solar Energy Laboratory: **TRNSYS 14.2 -A Transient System Simulation Programm**, Madison, Wi, USA, April 1992

[TiEdemann]

Tiedemann, H.: **Erdwärmetauscher für Schweineställe**; KTBL-Schrift 340, Münster-Hiltrup, Landwirtschaftsverlag, 1991

[Trombe]

Trombe, A.; Pettit, M.; Bourret, B.: **Air Cooling by Earth Tube Heat Exchanger: Experimental approach,** Institut National des Sciences Appliquees (INSA), Toulouse, France, Renewable Energy (United Kingdom), 1991, vol. 1(5-6), S.699-707

[Trümper]

Trümper, Albers, Hain: **Sonnenenergienutzung mittels eines Erdwärmetauschers zur Vorwärmung und Ankühlung der Zuluft für Wohngebäude;** Universität Dortmund, Lehrstuhl TGA, 1992

[Tzaferis]

Tzaferis, A.; Liparakis, D.; Santamouris, M.; Argiriou, A.: **Analysis of the Accuracy and Sensitivity of Eight Models to Predict the Performance of Earth-to-Air Heat Exchangers**. T.E.I. Pireus; University of Athens; Protechna Ltd., Greece, Energy and Buildings (Switzerland), 1992 vol. 18(1) S. 35-43

U

[VDI2067]

VDI 2067 Blatt 1, Wirtschaftlichkeit gebäudetechnischer Anlagen - Grundlagen und Kostenberechnung, Beuth-Verlag, Berlin 2000

[VDI 2078]

VDI 2078: **Berechnung der Kühllast klimatisierter Räume (VDI-Kühllastregeln)**, Beuth Verlag Berlin, Juli 1996

[VDI 3801]

VDI 3801, Betreiben von Raumlufttechnischen Anlagen, Beuth-Verlag, Berlin 2000

[VDI 3803]

VDI 3803, Raumlufttechnische Anlagen - Bauliche und technische Anforderungen, Beuth-Verlag, Berlin 2002

[VDI 4300]

VDI 4300, Blatt 6, Messen von Innenraumluftverunreinigungen - Messstrategie für flüchtige organische Verbindungen (VOC), Beuth-Verlag Berlin 2000

[VDI 4640-4]

VDI- Richtlinie 4640: Thermische Nutzung des Untergrundes, Hrsg.: Verein Deutscher Ingenieure, VDI-Gesellschaft Energietechnik (GET), Beuth Verlag, Februar 1998

[VDI 6022]

VDI 6022, Teil 1 – Hygienische Anforderungen an Raumlufttechnische Anlagen, Beuth-Verlag, Berlin 1997

[VDMA 24186]

VDMA 24186-1, Leistungsprogramm für die Wartung von lufttechnischen Ausrüstungen in Gebäuden; Lufttechnische Geräte und Anlagen Beuth-Verlag, Berlin 1988

[VDIGET]

VDI-Gesellschaft Energietechnik, VDI-GET Jahrbuch 1994Verein Deutscher Ingenieure, Düsseldorf, 1994 [2]

[WA]

VDI-Wärmeatlas-Berechnungsblätter für den Wärmeübergang, Hrsg. Verein Deutscher Ingenieure VDI, VDI-Verlag, Düsseldorf, 1994

[Winkler]

Winkler, T.: Variantenvergleich zur Klimatisierung eines Bürogebäudes mit Hilfe regenerativer Energien, Diplomarbeit, Fachhochschule München, Fachbereich Versorgungstechnik, 1998/99

[Wollscheid]

Wollscheid, G.; Späte, F.: **Erdreichwärmetauscher im Solar-Campus Jülich**, Tagungsband 11. Internationales Sonnenforum Köln, Deutsche Gesellschaft für Sonnenenregie DGS, Köln 1998

[Wortmann]

Wortmann, R.: Luft-Erdwärmetauscher – Neue Wege in der Lüftungstechnik, Bochumer Bezirksverein des VDI, 1999

[Zimmermann I]

Zimmermann, M.; Andersson, J.: Case Studies of Low Energy Cooling Technologies, International Energy Agency, Annex 28: Low Energy Cooling, EMPA ZEN, Dübendorf, Schweiz 1998

[Zimmermann II]

Zimmermann, M.: **Handbuch der passiven Kühlung**, Eidgenössische Materialprüfungs- und Forschungsanstalt EMPA, Dübendorf 1999

[Zoellick]

Zoellick, B.: **Predicted and Observed Performance of a Buried Earth-Air Heat, Exchanger Cooling System**. 6th National Passive Solar Conference, Portland, Orlando, USA, International Solar Energy Society, USA,1981,S. 822-826

6.1 Webadressen

http://www.ag-solar.de

http://www.solarbau.de

http://www.cepheus.de/ph-was.html

http://www.paul-lueftung.de

http://www.strom.de

http://www.lueftungsnet.de/

http://nesa1.uni-siegen.de/softlab/gaea.htm

http://www.geographie.ruhr-uni-bochum.de/agklima/ewt/index.html

http://sonnenofen.de/

http://www.statistik-bund.de

Wir möchten uns an dieser Stelle bei dem Ministerium für Schule, Wissenschaft und Forschung des Landes Nordrhein-Westfalen (MSWF) für das im Rahmen der Arbeitsgemeinschaft Solar NRW geförderten **Verbundprojekt L-EWT** bedanken

