
pyMIC: A Python* Offload Module for the
Intel® Xeon Phi™ Coprocessor

Michael Klemm Jussi Enkovaara
Software and Services Group HPC Support
Intel Corporation CSC Finland

* Some names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE
OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.

Copyright © 2014 Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, and Xeon Phi are trademarks of Intel
Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations
that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Python in HPC

• Python has gained a lot of interest throughout the HPC
community (and others):

• IPython

• Numpy / SciPy

• Pandas

• Intel® Xeon Phi™ Coprocessor is an interesting target to
speed-up processing of Python codes

The pyMIC Offload Infrastructure

• Design principles (pyMIC’s 4 “K”s)

• Keep usage simple

• Keep the API slim

• Keep the code fast

• Keep control in a programmer’s hand

• pyMIC facts

• 650 lines of C/C++ code; Intel® LEO for interfacing with MPSS

• 450 lines of Python code for the main API

High-Level Overview

• Intel® LEO: low-level device
interaction
• Transfer of shared libraries

• Data transfers

• Code invocation

• C/C++ extension module
• Low-level device management

• Interaction with LEO

• Slim Python API to hide
implementation details

• Library with internal device kernels

_pyMICimpl

[C/C++]

Intel LEO runtime

o
ff

lo
a

d
_

a
rr

a
y

(k
e

rn
e

ls
)

[C
]

pyMIC

[Python]

Key Data Structures

offload_device

• Interaction with devices

• Loading of shared libraries

• Invocation of kernel
functions

• Buffer management

offload_array

• numpy.ndarray container

• Device buffers

• Transfer management

• Simple kernels and
operators (zeros, +, *)

Example dgemm: The Host Side…
import pyMIC as mic
import numpy as np

device = mic.devices[0]
device.load_library("libdgemm.so")

m,n,k = 4096,4096,4096
alpha = 1.0
beta = 0.0
np.random.seed(10)
a = np.random.random(m*k).reshape((m, k))
b = np.random.random(k*n).reshape((k, n))
c = np.zeros((m, n))

offl_a = device.bind(a)
offl_b = device.bind(b)
offl_c = device.bind(c)

device.invoke_kernel("dgemm_kernel",
offl_a, offl_b, offl_c,
m, n, k, alpha, beta)

offl_c.update_host()

• Get a device handle
(numbered from 0 to n-1)

• Load native code as a shared-
object library

• Use bind to create an offload
buffer for host data

• Invoke kernel function and pass
actual arguments

• Update host data from the
device buffer

Example dgemm: The Target Side

#include <pymic_kernel.h>

#include <mkl.h>

PYMIC_KERNEL

void dgemm_kernel(int argc, uintptr_t argptr[], size_t sizes[]) {

double *A = (double*) argptr[0];

double *B = (double*) argptr[1];

double *C = (double*) argptr[2];

int m = *(long int*) argptr[3];

int n = *(long int*) argptr[4];

int k = *(long int*) argptr[5];

double alpha = *(double*) argptr[6];

double beta = *(double*) argptr[7];

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

m, n, k, alpha, A, k, B, n, beta, C, n);

}

• Retrieve array pointer by
casting argptr to target type

• Retrieve scalar arguments by
casting and dereferencing

• Invoke (native) dgemm kernel

The Offload Protocol

9

import pyMIC as mic
import numpy as np

device = mic.devices[0]
device.load_library("libdgemm.so")

m,n,k = 4096,4096,4096
alpha = 1.0
beta = 0.0
np.random.seed(10)
a = np.random.random(m*k).reshape((m, k))
b = np.random.random(k*n).reshape((k, n))
c = np.zeros((m, n))

offl_a = device.bind(a)
offl_b = device.bind(b)
offl_c = device.bind(c)

device.invoke_kernel("dgemm_kernel",
offl_a, offl_b,

offl_c,
m, n, k, alpha, beta)

offl_c.update_host()

#include <pymic_kernel.h>

#include <mkl.h>

PYMIC_KERNEL

void dgemm_kernel(int argc,

uintptr_t argptr[],

size_t sizes[]) {

double *A = (double*) argptr[0];

double *B = (double*) argptr[1];

double *C = (double*) argptr[2];

int m = *(long int*) argptr[3];

int n = *(long int*) argptr[4];

int k = *(long int*) argptr[5];

double alpha = *(double*) argptr[6];

double beta = *(double*) argptr[7];

cblas_dgemm(CblasRowMajor,

CblasNoTrans,

CblasNoTrans,

m, n, k, alpha, A,

k, B, n, beta, C, n);

}

a.update_device()

a.update_host()

a.load_library()

0101010100100010101
0101010001010010010
1010100101010101010
0010010011101110001
0101010010101011011
0010101010101010101

0101010100100010101
0101010001010010010
1010100101010101010
0010010011101110001
0101010010101011011
0010101010101010101

h
o

st
 p

ro
ce

ss

target p
ro

cess

Buffer Management: Buffer Creation

class offload_device:

def bind(self, array, update_device=True):

if not isinstance(array, np.ndarray):

raise ValueError("...")

construct a new offload_array

ass = offload_array(array.shape, array.dtype,

order)

ass.array = array

if update_device:

allocate & copy

self._copy_to_target(ass.array)

else:

only allocate

self._buffer_allocate(ass.array)

return ass

void buffer_allocate(int device, char* data,

size_t size) {

uintptr_t host_ptr = (uintptr_t) data;

uintptr_t dev = 0;

#pragma offload target(mic:device) \

out(dev_ptr) \

nocopy(data:length(size) \

align(64) alloc_if(1) free_if(0))

{

dev_ptr = (uintptr_t) data;

}

buffers[device][host_ptr] = dev_ptr;

}

Buffer Management: Data Transfer

class offload_device:

def _buffer_update_on_target(self,

*arrays):

if len(arrays) == 0:

raise

ValueError("no argument")

if type(arrays[0]) == tuple:

arrays = arrays[0]

for array in arrays:

nbytes = int(array.nbytes)

_pymic_impl_buffer_update_on_target(

self.map_dev_id(), array, nbytes)

return None

void buffer_update_on_target(int device,

char* data,

size_t size)

{

uintptr_t host_ptr =

reinterpret_cast<uintptr_t>(data);

#pragma offload target(mic:device) \

in(data:length(size) \

align(64)

alloc_if(0) free_if(0))

{

// do nothing

}

}

Example: Singular Value Decomposition

• Treat picture as 2D matrix

• Decompose matrix:

M=U×∑×VT

• Ignore some singular values

• Effectively compresses images

Example: Singular Value Decomposition

Host code
import numpy as np

import pyMIC as mic

from PIL import Image

def compute_svd(image):

mtx = np.asarray(image.getdata(band=0),

float)

mtx.shape = (image.size[1], image.size[0])

mtx = np.matrix(mtx)

return np.linalg.svd(mtx)

def reconstruct_image(U, sigma, V):

reconstructed = U * sigma * V

image = Image.fromarray(reconstructed)

return image

Host code, cont’d
def reconstruct_image_dgemm(U, sigma, V):

offl_tmp = device.empty((U.shape[0], U.shape[1]),

dtype=float, update_host=False)

offl_res = device.empty((U.shape[0], V.shape[1]),

dtype=float, update_host=False)

offl_U = device.bind(U)

offl_sigma = device.bind(sigma)

offl_V = device.bind(V)

alpha, beta = 1.0, 0.0

m, k, n = U.shape[0], U.shape[1], sigma.shape[1]

device.invoke_kernel("dgemm_kernel",

offl_U, offl_sigma, offl_tmp,

m, n, k, alpha, beta)

m, k, n = offl_tmp.shape[0], offl_tmp.shape[1], V.shape[1]

device.invoke_kernel("dgemm_kernel",

offl_tmp, offl_V, offl_res,

m, n, k, alpha, beta)

image = Image.fromarray(offl_res.update_host().array)

return image

Integration with GPAW

• GPAW is an open source software package for various
quantum mechanical simulations at atomic scale

• http://wiki.fysik.dtu.dk/gpaw

• Few hundred users all over the world

• Implemented as a combination of Python and C

• High-level algorithms in Python

• Computational kernels in C (or in libraries)

• Massively parallelized (with MPI)

• Key operation: matrix-matrix multiplication

Integration with GPAW

• Control the flow of large
data (NumPy arrays) in
Python level

• Offload heavy
computations to
coprocessor

Integration in GPAW

from gpaw.grid_descriptor

import GridDescriptor

gpts = (64, 64, 64)

nbands = 512

cell = (8.23, 8.23, 8.23)

gd = GridDescriptor(gpts, cell)

psit_nG = gd.zeros(nbands, mic=True)

vt_G = gd.zeros(mic=True)

Initialize psit_nG and vt_G

htpsit_nG = gd.zeros(nbands, mic=True)

for n in range(nbands):

htpsit_nG[n] = vt_G * psit_nG[n]

H_nn = gd.integrate(psit_nG, htpsit_ng)

import pyMIC as mic

device = mic.devices[0]

...

def zeros(self, n=(), dtype=float,

mic=False):

array = self._new_array(n, dtype)

if mic:

return device.bind(array)

else:

return array

Performance: Bandwidth of Data Transfers

0

1000

2000

3000

4000

5000

6000

7000

8000

8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

1
6

7
7

7
2

1
6

3
3

5
5

4
4

3
2

6
7

1
0

8
8

6
4

1
3

4
2

1
7

7
2

8

2
6

8
4

3
5

4
5

6

5
3

6
8

7
0

9
1

2

1
0

7
3

7
4

1
8

2
4

2
1

4
7

4
8

3
6

4
8

M
iB

/s
ec

data transferred [bytes]

bind

copyin

copyout

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests are
measured using specific computer systems, components, software, operations, and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. System configuration: Intel S2600GZ server with two Intel Xeon E5-2697v2 12-core
processors at 2.7 GHz (64 GB DDR3 with 1867 MHz), Red Had Enterprise Linux 6.5 (kernel version 2.6.32-358.6.2) and Intel C600 IOH, one Intel Xeon Phi
7120P coprocessor (C0 stepping, GDDR5 with 3.6 GT/sec, driver v3.3-1, flash image/micro OS 2.1.02.0390), and Intel Composer XE 14.0.3.174. For more
complete information visit http://www.intel.com/performance.

Performance: dgemm

0

100

200

300

400

500

600

700

1
2

8

3
8

4

6
4

0

8
9

6

1
1

5
2

1
4

0
8

1
6

6
4

1
9

2
0

2
1

7
6

2
4

3
2

2
6

8
8

2
9

4
4

3
2

0
0

3
4

5
6

3
7

1
2

3
9

6
8

4
2

2
4

4
4

8
0

4
7

3
6

4
9

9
2

5
2

4
8

5
5

0
4

5
7

6
0

6
0

1
6

6
2

7
2

6
5

2
8

6
7

8
4

7
0

4
0

7
2

9
6

7
5

5
2

7
8

0
8

8
0

6
4

G
FL

O
P

S

matrix size

MKL

Numpy (MKL)

pyMIC (kernel only)

pyMIC (incl. transfers)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests are
measured using specific computer systems, components, software, operations, and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. System configuration: Intel S2600GZ server with two Intel Xeon E5-2697v2 12-core
processors at 2.7 GHz (64 GB DDR3 with 1867 MHz), Red Had Enterprise Linux 6.5 (kernel version 2.6.32-358.6.2) and Intel C600 IOH, one Intel Xeon Phi
7120P coprocessor (C0 stepping, GDDR5 with 3.6 GT/sec, driver v3.3-1, flash image/micro OS 2.1.02.0390), and Intel Composer XE 14.0.3.174. For more
complete information visit http://www.intel.com/performance.

Performance: GPAW integrate and rotate

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests are
measured using specific computer systems, components, software, operations, and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. System configuration: Intel S2600GZ server with two Intel Xeon E5-2697v2 12-core
processors at 2.7 GHz (64 GB DDR3 with 1867 MHz), Red Had Enterprise Linux 6.5 (kernel version 2.6.32-358.6.2) and Intel C600 IOH, one Intel Xeon Phi
7120P coprocessor (C0 stepping, GDDR5 with 3.6 GT/sec, driver v3.3-1, flash image/micro OS 2.1.02.0390), and Intel Composer XE 14.0.3.174. For more
complete information visit http://www.intel.com/performance.

Summary & Future Work

• pyMIC

• A slim, easy-to-use offload interface for Python

• Native kernels on the target devices

• Almost negligible extra overhead for Python integration

• Future versions will likely bring:

• Offloading of full Python code

• Asynchronous offloading and data transfers

• Download pyMIC at https://github.com/01org/pyMIC.

• Mailinglist at https://lists.01.org/mailman/listinfo/pymic

https://github.com/01org/pyMIC
https://lists.01.org/mailman/listinfo/pymic

