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Python in HPC

• Python has gained a lot of interest throughout the HPC 
community (and others):

• IPython

• Numpy / SciPy

• Pandas

• Intel® Xeon Phi™ Coprocessor is an interesting target to 
speed-up processing of Python codes



The pyMIC Offload Infrastructure

• Design principles (pyMIC’s 4 “K”s)

• Keep usage simple

• Keep the API slim

• Keep the code fast

• Keep control in a programmer’s hand

• pyMIC facts

• 650 lines of C/C++ code; Intel® LEO for interfacing with MPSS

• 450 lines of Python code for the main API



High-Level Overview

• Intel® LEO: low-level device 
interaction
• Transfer of shared libraries

• Data transfers

• Code invocation

• C/C++ extension module
• Low-level device management

• Interaction with LEO

• Slim Python API to hide 
implementation details

• Library with internal device kernels
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Key Data Structures

offload_device

• Interaction with devices

• Loading of shared libraries

• Invocation of kernel 
functions

• Buffer management

offload_array

• numpy.ndarray container

• Device buffers

• Transfer management

• Simple kernels and 
operators (zeros, +, *)



Example dgemm: The Host Side…
import pyMIC as mic
import numpy as np

device = mic.devices[0]
device.load_library("libdgemm.so")

m,n,k = 4096,4096,4096
alpha = 1.0
beta = 0.0
np.random.seed(10)
a = np.random.random(m*k).reshape((m, k))
b = np.random.random(k*n).reshape((k, n))
c = np.zeros((m, n))

offl_a = device.bind(a)
offl_b = device.bind(b)
offl_c = device.bind(c)

device.invoke_kernel("dgemm_kernel", 
offl_a, offl_b, offl_c, 
m, n, k, alpha, beta)

offl_c.update_host()

• Get a device handle
(numbered from 0 to n-1)

• Load native code as a shared-
object library

• Use bind to create an offload 
buffer for host data

• Invoke kernel function and pass 
actual arguments

• Update host data from the 
device buffer



Example dgemm: The Target Side

#include <pymic_kernel.h>

#include <mkl.h>

PYMIC_KERNEL

void dgemm_kernel(int argc, uintptr_t argptr[], size_t sizes[]) {

double *A = (double*) argptr[0];

double *B = (double*) argptr[1];

double *C = (double*) argptr[2];

int m = *(long int*) argptr[3];

int n = *(long int*) argptr[4];

int k = *(long int*) argptr[5];

double alpha = *(double*) argptr[6];

double beta = *(double*) argptr[7];

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

m, n, k, alpha, A, k, B, n, beta, C, n);

}

• Retrieve array pointer by 
casting argptr to target type  

• Retrieve scalar arguments by 
casting and dereferencing

• Invoke (native) dgemm kernel 



The Offload Protocol

9

import pyMIC as mic
import numpy as np

device = mic.devices[0]
device.load_library("libdgemm.so")

m,n,k = 4096,4096,4096
alpha = 1.0
beta = 0.0
np.random.seed(10)
a = np.random.random(m*k).reshape((m, k))
b = np.random.random(k*n).reshape((k, n))
c = np.zeros((m, n))

offl_a = device.bind(a)
offl_b = device.bind(b)
offl_c = device.bind(c)

device.invoke_kernel("dgemm_kernel", 
offl_a, offl_b, 

offl_c, 
m, n, k, alpha, beta)

offl_c.update_host()

#include <pymic_kernel.h>

#include <mkl.h>

PYMIC_KERNEL

void dgemm_kernel(int argc, 

uintptr_t argptr[], 

size_t sizes[]) {

double *A = (double*) argptr[0];

double *B = (double*) argptr[1];

double *C = (double*) argptr[2];

int m = *(long int*) argptr[3];

int n = *(long int*) argptr[4];

int k = *(long int*) argptr[5];

double alpha = *(double*) argptr[6];

double beta = *(double*) argptr[7];

cblas_dgemm(CblasRowMajor, 

CblasNoTrans, 

CblasNoTrans,

m, n, k, alpha, A, 

k, B, n, beta, C, n);

}

a.update_device()

a.update_host()

a.load_library()
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Buffer Management: Buffer Creation

class offload_device:

def bind(self, array, update_device=True):

if not isinstance(array, np.ndarray):

raise ValueError("...")

# construct a new offload_array

ass = offload_array(array.shape, array.dtype, 

order)

ass.array = array

if update_device:

# allocate & copy

self._copy_to_target(ass.array)

else:

# only allocate

self._buffer_allocate(ass.array)

return ass

void buffer_allocate(int device, char* data, 

size_t size) {

uintptr_t host_ptr = (uintptr_t) data;

uintptr_t dev = 0;

#pragma offload target(mic:device) \

out(dev_ptr) \

nocopy(data:length(size) \

align(64) alloc_if(1) free_if(0))

{

dev_ptr = (uintptr_t) data;

}

buffers[device][host_ptr] = dev_ptr;

}



Buffer Management: Data Transfer

class offload_device:

def _buffer_update_on_target(self, 

*arrays):

if len(arrays) == 0:

raise

ValueError("no argument")

if type(arrays[0]) == tuple:

arrays = arrays[0]

for array in arrays:

nbytes = int(array.nbytes)

_pymic_impl_buffer_update_on_target(

self.map_dev_id(), array, nbytes)

return None

void buffer_update_on_target(int device, 

char* data, 

size_t size) 

{

uintptr_t host_ptr = 

reinterpret_cast<uintptr_t>(data);

#pragma offload target(mic:device) \

in(data:length(size) \

align(64) 

alloc_if(0) free_if(0))

{

// do nothing

}

}



Example: Singular Value Decomposition

• Treat picture as 2D matrix

• Decompose matrix:

M=U×∑×VT

• Ignore some singular values

• Effectively compresses images



Example: Singular Value Decomposition

Host code
import numpy as np

import pyMIC as mic

from PIL import Image

def compute_svd(image):    

mtx = np.asarray(image.getdata(band=0), 

float)

mtx.shape = (image.size[1], image.size[0])

mtx = np.matrix(mtx)

return np.linalg.svd(mtx)

def reconstruct_image(U, sigma, V):

reconstructed = U * sigma * V

image = Image.fromarray(reconstructed)

return image

Host code, cont’d
def reconstruct_image_dgemm(U, sigma, V):

offl_tmp = device.empty((U.shape[0], U.shape[1]), 

dtype=float, update_host=False)

offl_res = device.empty((U.shape[0], V.shape[1]), 

dtype=float, update_host=False)

offl_U = device.bind(U)

offl_sigma = device.bind(sigma)

offl_V = device.bind(V)

alpha, beta = 1.0, 0.0     

m, k, n = U.shape[0], U.shape[1], sigma.shape[1]

device.invoke_kernel("dgemm_kernel", 

offl_U, offl_sigma, offl_tmp, 

m, n, k, alpha, beta)

m, k, n = offl_tmp.shape[0], offl_tmp.shape[1], V.shape[1]

device.invoke_kernel("dgemm_kernel", 

offl_tmp, offl_V, offl_res, 

m, n, k, alpha, beta)

image = Image.fromarray(offl_res.update_host().array)

return image



Integration with GPAW

• GPAW is an open source software package for various 
quantum mechanical simulations at atomic scale

• http://wiki.fysik.dtu.dk/gpaw

• Few hundred users all over the world

• Implemented as a combination of Python and C

• High-level algorithms in Python

• Computational kernels in C (or in libraries)

• Massively parallelized (with MPI)

• Key operation: matrix-matrix multiplication



Integration with GPAW

• Control the flow of large 
data (NumPy arrays) in 
Python level

• Offload heavy 
computations to 
coprocessor



Integration in GPAW

from gpaw.grid_descriptor

import GridDescriptor

gpts = (64, 64, 64)

nbands = 512

cell = (8.23, 8.23, 8.23)

gd = GridDescriptor(gpts, cell)

psit_nG = gd.zeros(nbands, mic=True)

vt_G = gd.zeros(mic=True)

# Initialize psit_nG and vt_G

htpsit_nG = gd.zeros(nbands, mic=True)

for n in range(nbands):

htpsit_nG[n] = vt_G * psit_nG[n]

H_nn = gd.integrate(psit_nG, htpsit_ng)

import pyMIC as mic

device = mic.devices[0]

...

def zeros(self, n=(), dtype=float, 

mic=False):

array = self._new_array(n, dtype)

if mic:

return device.bind(array)

else:

return array



Performance: Bandwidth of Data Transfers 
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Performance: dgemm
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Performance: GPAW integrate and rotate
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Summary & Future Work

• pyMIC

• A slim, easy-to-use offload interface for Python

• Native kernels on the target devices

• Almost negligible extra overhead for Python integration

• Future versions will likely bring:

• Offloading of full Python code

• Asynchronous offloading and data transfers

• Download pyMIC at https://github.com/01org/pyMIC.

• Mailinglist at https://lists.01.org/mailman/listinfo/pymic

https://github.com/01org/pyMIC
https://lists.01.org/mailman/listinfo/pymic



