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Abstract

The model based design of advanced flight con-
trol systems raises many computational challenges
both in developing design adequate models as well
as in solving optimization based controller tuning
and assessment problems. The generation of un-
certainty models for aircraft dynamics and the de-
velopment of low order aeroelastic models are two
modelling problems leading to symbolic and numer-
ical computational challenges. Further challenges
arise in solving semi-infinite optimization problems
for tuning controller parameters or global optimiza-
tion problems for controller robustness assessment.
The satisfactory solution of such problems repre-
sents a sine qua non condition for the develop-
ment of future computer aided design environments
for the flight control systems design of the next gen-
eration aircraft.

1. Introduction

The main function of a modern flight control system
(FCS) of an aircraft is to ensure its safe and eco-
nomic operation, such that all intended flight mis-
sions can be accomplished over a wide range of op-
erating conditions, and unexpected events (e.g. en-
gine failure) can be appropriately handled. The in-
creased safety, and the economical and performance
demands led to advanced FCSs of very high level
of complexity, involving large development costs.
The potential danger that the resulting economi-
cal benefits (e.g. low fuel consumption, less weight)
are nullified by higher design and maintenance costs
requires the development of efficient, cost effective
computer aided FCS design technologies, capable
to ensure up to 30% reduction of overall develop-
ment costs of a new aircraft. The reduction of costs
by using advanced design methodologies is the cen-
tral issue for the success of the next generation of
transport aircraft.

Although the flight control laws design represents
a modest part in the overal FCS design, its role is
central for the aircraft operation [1, 2]. For an air-
craft, the role of feedback control is well known: it

provides tight pilot command tracking, the attenu-
ation of effects of external disturbances (e.g. wind
gusts), and improved dynamical behaviour in pres-
ence of variations of aircraft parameters (robustness
against parametric uncertainties). A common need
of many modern feedback control design method-
ologies is the availability of adequate aircraft dy-
namical models of different complexities. For in-
stance, accurate nonlinear models are needed for
FCS evaluation by simulations. Low order approx-
imate models are necessary for efficient evaluation
of various design criteria or constraints. Note that
several frequently used flying qualities are formu-
lated on basis of appropriate linear models.

In this paper we discuss two modelling problems:
the generation of uncertainty descriptions for air-
craft dynamics and the development of low order
aeroelastic models. Both lead to difficult com-
putational challenges which are presently not yet
satisfactorily solved. Further we discuss the gen-
eral formulation of flight control laws design as
semi-infinite constrained multi-criteria optimiza-
tion problems and describe an iterative solution
method making these very complex optimization
problems tractable. Finally, we address the com-
putational aspects of assessment of designed flight
controllers. The efficient solutions of some typical
assessment problems (e.g. the NP hard stability ro-
bustness problem) represent computationally chal-
lenging global optimization problems.

Throughout the paper we will often refer to the De-
sign Challenge formulated by the GARTEUR Ac-
tion Group on Robust Flight Control and described
in a recent book [2]. The design problem formula-
tion together with the developement of an accurate
dynamical model, the Research Civil Aircraft Model
(RCAM), is described in [3]. The above book con-
tains complete solutions for the GARTEUR robust
control design challenge benchmark problem for
RCAM. The solution proposed in [4, 5] illustrates
the advantages and difficulties of the semi-infinite
optimization based design. Post-design stability
robustness results for 12 designs for the RCAM
benchmark problem are reported in [6].



2. Computational Challenges in Aircraft
Dynamics Modelling

The discussion of aircraft dynamics modelling prob-
lem in this section is purposely restricted to the de-
velopment of approximate low order models which
are suitable for flight controller synthesis (e.g. to
evaluate appropriate flying quality criteria) or in
post-design performance robustness assessment of
flight controllers. We will not concern with the im-
portant details of developing the original aircraft
models, focusing mainly on the computational as-
pects of converting these models in models adequate
for various analysis and design tasks. We discuss
two aircraft modelling problems, both of them lead-
ing to difficult computational challenges.

The first problem is the generation of linearized air-
craft models with explicit parametric uncertainty
descriptions starting from lumped-parameter non-
linear dynamic models. The parametric uncertain
linear models may serve for stability and perfor-
mance robustness analysis or may be used for ro-
bust controller synthesis. The main computational
challenges of uncertainty modelling lie in efficient
symbolic solution of high order multi-dimensional
realization problems and in developing efficient nu-
merical procedures for exact or approximate multi-
dimensional order reduction.

The second modelling problem is the determina-
tion of lower order approximate aeroelastic models
starting from large order high fidelity models re-
sulted from finite element modelling of the flexible
aircraft. These models may be used to evaluate cri-
teria for the design of flutter-free flight controllers.
The main computational challenge here is the devel-
opment of efficient computational methods for the
order reduction of high order systems (from several
thousands to several tenth).

2.1. Parametric Uncertainty Modelling

In many cases, the dynamical behaviour of a flying
aircraft can be accurately described by a lumped-
parameter nonlinear dynamic model of the form

(t) F(x(t), u(t), p) (1)
y() G(a(t), ult), p)

where x, u, y are the state-, input- and output—
vectors, respectively, and p is a vector of model pa-
rameters. The lumped-parameter aircraft model is
derived on basis of well established flight physics
principles applied to the rigid-body aircraft dynam-
ics and results as the interconnection of several dy-
namical and static subsystems describing different
parts of the aircraft dynamics and of the interac-
tions of aircraft with its flight environment. As an
example of a lumped-parameter rigid-body aircraft
model, we will often refer to the Research Civil Air-
craft Model (RCAM) [3].

If aeroelastic effects are negligible, then the rela-
tively simple lumped-parameter approximation (1)
is completely satisfactory for accurate simulation
of the aircraft dynamics, including even real-time
simulations. The nonlinear model (1) is also use-
ful for generating linearized models for particular
flight conditions and parameter values. Such linear
models can be used then for flight control system
analysis and design purposes. Since parametric de-
pendencies are explicit, the model (1) can also serve
to generate linearized parameter dependent uncer-
tainty models.

The overall goal of uncertainty modelling is to ob-
tain a linear time-invariant state space model with
explicit parameter dependencies, which satisfacto-
rily approximates all linearizations of the nonlin-
ear model (1) over all flight conditions (e.g. all
speed/altitude values) and all parameter values.
Such a linear model may be used for stability and
performance robustness analysis as well as in robust
controller synthesis.

There are several approaches possible with various
degrees of conservativeness to derive uncertain air-
craft models [7]. The approach which we describe
to obtain a linear parametric representation uses
the symbolic linearization of the nonlinear model
(1) in a nominal flight condition and generates the
uncertainty model using an uncertainty description
based on linear fractional transformation (LFT).
For some nominal values of the model parameters
Prom, it is possible to compute numerically an equi-
librium point {Z, @} of the system (1) by solving the
system of nonlinear equations

0 = F(T, Ha pnom) . (2)

Since this is an overdetermined system, usually a
so-called ”trim condition” is also imposed by spec-
ifying some components of T and/or u.

Let 7 := G(T, U, pnom) be the corresponding equi-
librium value of y. Then by linearization of the
nonlinear model (1) in the neighbourhood of an
equilibrium point {Z,u} we obtain an approximate
linearized time-invariant model of the form

¥ = A(p)T+Bp)u
7 = Clp)7+D(p)i . )

where T =z —Z, u=u—u, y =y — ¥y, and the
system matrices are given by
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We can freely assume that any non-rational para-
metric expressions in the elements of the state space



model matrices can be replaced by polynomial or
rational approximations. Thus the model (3) is a
linearized system in a rationally dependent paramet-
ric representation, with the matrices A(p), B(p),
C(p) and D(p) having only entries which are ratio-
nal functions of the physical parameters py,...,p,.
To account for dependencies of the entries of the
system matrices on particular trim conditions, it
is possible to enlarge the parameter vector p by
adding some components of the equilibrium point
vectors to it.

Obtaining a unique parametric linear model of the
form (3), which covers all flight conditions and all
possible parameter variations, is obviously a diffi-
cult model building task since generally, the ele-
ments of the system matrices depend on the equi-
librium point where the linearization has been per-
formed, which on its turn depends on the used
nominal parameter values. A possible way to over-
come this situation is described in [7] in case of
RCAM. This involved additional parameter fitting
for some entries of system matrices to cover ap-
proximately all equilibrium points. To compensate
for large nonzero residuals, additional fictive un-
certainty parameters can be added to p. Without
such enhancements, the resulting linear paramet-
ric model (3) provides an accurate description of
joint parametric dependencies in the aircraft model
only in the neighbourhood of an equilibrium point.
Thus, in general, it is questionable if the paramet-
ric linear model (3) is appropriate to be used in
a p-analysis and synthesis methodology [8] if large
parametric variations are involved, or if the con-
troller to be designed must be robust in all flight
conditions. Nevertheless, in such cases an obvious
approach seems to be to build several parametric
linear models of form (3) in a representative set of
equilibrium points of the flight envelope for a given
aircraft. Clearly, this approach is computationally
very involved since it is not clear from the begining
which and how many points are necessary to choose
to cover the whole flight envelope.

In what follows we sketch very shortly the approach
to convert a parametric description of a linear sys-
tem of the form (3) into an LFT-based uncertainty
description. Any uncertainty in a parameter p; ex-
pressed as p; € [p., P;| can be transcribed in a
normalized form p, = p;o + s;00; with |§;] < 1,
pio = (p, +7;)/2 and si0 = (p; — p,)/2. This lo-
cal parameter uncertainty is then expressed as an
elementary upper LE'T

ren([Xa]s) @

Recall that for a partitioned matrix M

My1 Mo (r1+72) % (q1+q2)
M = c R\ 2 q1Tq2
[ My Moo }

and for A € R®*™ | the upper LFT F,(M,A) is
defined by the feedback-like formula

Fu(M,A) = May + Moy (I — AMy1) ' AM;s.

Since all elements of matrices A, B, C and D are
rational functions in parameters p;, i = 1,...,q,
the structured parametric uncertainties at the com-
ponents level can be transformed into structured
parametric uncertainties at the level of system ma-
trices by using the properties of LFTs [9]. Specif-
ically, products, sums, divisions of individual vari-
ables, can be directly represented by series, parallel
or feedback couplings of the corresponding elemen-
tary LFTs of form (5). The same is true for the cor-
responding operations with more general rationally
dependent parametric expressions. Finally, elemen-
tary matrix constructs like row and column con-
catenations, or diagonal stacking are immediately
expressible by equivalent LFT constructs. Thus,
for all system matrices, LFT uncertainty models
can be readily generated using elementary LFT op-
erations. Equivalently, if we write the state space
description (3) in the form

HEZHRE Al
we can express S(p) as an LFT

so=r (| o §2]a). o

where the diagonal matrix

SRS 1
—_

A= diag[51]n1a62ln2a T 6qlnq ]

has on its diagonal the normalized uncertainty pa-
rameters 01, 02, ...,d,. Note that

| A0 Bo
S22_|:CO DO:|7

where Ay, By, Co and Dy are the nominal values
of the system matrices (for all §; set to zero). The
order of the LFT uncertainty description of the sys-
tem (3) is na = Y., n;, where n; is the order of
the block in A corresponding to the uncertain pa-
rameter p;.

A systematic procedure to generate LFT-based un-
certainty descriptions has been proposed in [10].
Using this approach, three uncertainty models have
been generated for RCAM starting from a para-
metric linear model developed in [7]. This linear
model corresponds to a symmetric horizontal flight
at constant air speed V4 = 80m/s. The considered
uncertain parameters are the mass m, two coor-
dinates of the center of gravity X., and Z.4, and
the air speed V4. In the first LF'T model the air
speed value was assumed exactly known (no un-
certainty on air speed). This model served mainly



for the post-design assessment of the stability ro-
bustness of the designed controllers for RCAM [6].
More involved LFT descriptions have been obtained
by adding the air speed as an uncertain parame-
ter. The second LFT model was obtained by tak-
ing C,, = %pL‘%S as uncertain parameter instead
of m, where p is the air density and S is the wing
area. The advantage of this model is its lower order
in comparison with the third LFT model, where m
and V,4 are independent uncertain parameters.

The resulting orders of the blocks in A for each un-
certain parameter of the three LFT models are sum-
marized in the following table. These orders have
been obtained by performing repeatedly 1-D mini-
mal realizations on subsystems formed by isolating
individual blocks corresponding to a single parame-
ter as suggested in [10]. This order reduction proce-
dure was quit effective, taking into account that the
order of initial realizations were sometimes twice as
large as the values given bellow.

Parameters | m Cw Xeg Zeg Va | na

Model T 17 0 15 3 0 35

Model 11 0 43 19 5 23 90
7

Model IIT 47 0 30 109 | 193

The resulting LFT-based parametric descriptions
are generally non-minimal. The construction of
minimal order descriptions, that is, with lowest pos-
sible na, is essentially a multi-dimensional minimal
realization problem, for which presently no numeri-
cally efficient and reliable procedures exist. There-
fore, a special concern has been devoted in the last
years to minimize the orders of the initially gen-
erated LFTs. One possible approach to generate
low order LFTs which are almost always of mini-
mal order for single rational functions is to use ”op-
timal” algorithms with minimum number of oper-
ations (additions and multiplications) to evaluate
the numerator and denominator multivariate poly-
nomials [11, 12]. Additional heuristics at matrix
level [13], [14], [15], like exploiting common expres-
sions in the underlying system matrices, allow to
arrive at factored or additively decomposed expres-
sions which often lead to lower order LFTs. This
way is certainly effective, because the source of non-
minimality in the generated LFTs is almost exclu-
sively of structural nature, that is, it is a result
of the existence of common expressions entering in
different entries of the underlying system matrices.
Therefore, a further possibility to reduce symboli-
cally the order of generated LFTs is by employing
graph-theoretic results to eliminate structurally un-
controllable/unobservable parts along the lines of
results for 1-D systems [16, 17, 18, 19]. Recent re-
sults on tackling with the above aspects applied to
RCAM and recently developed symbolic manipula-
tion software in Maple for automatic generation of

low order LFT models are described in [20].

Symbolic computations for order reduction of LFTs
can only be employed for relatively small order
LFTs, since the combinatorial aspects in associ-
ation with high symbolic manipulation costs pre-
vent their use for large scale LFTs. Alternative ap-
proaches for order reduction are based on numerical
computations. For a recent survey of existent re-
sults see [21]. A possible numerical approach is the
exact model reduction techniques for LFT systems
as proposed in [22], [23]. This procedure extends
the exact model reduction approach for 1-D discrete
systems based on balanced truncation to n-D sys-
tems. From computational point of view it involves
the seeking of minimum rank non-negative definite
block diagonal solutions of two Lyapunov-type lin-
ear matriz inequalities (LMIs). The computed so-
lutions play the roles of Gramians in standard 1-D
model reduction (see next section) and are used to
construct appropriate truncation matrices to com-
pute the matrices of the lower order LFT-model.
It is presently questionable if this approach can be
turned into an efficient procedure to derive minimal
realizations of LFT descriptions, since no efficient
procedures exist to find singular structured solu-
tions of large LMIs. In fact, it turns out that tak-
ing this aspect explicitly into consideration, as for
example, by combining the solution of LMIs with
trace minimization techniques, leads to non-convex
optimization problems [21]. Of special importance
however is the fact that this approach can be em-
ployed to generate lower order LFT-approximations
by using balancing related multi-dimensional trun-
cation techniques [23].

An effective alternative approach for exact order
reduction of high order LFTs is to use block-
diagonal similarity transformation matrices of the
form T = diag[T1,...,T,], which commute with
the uncertainty structure of A (i.e. TA = AT),
to remove uncontrollable/unobservable parts. Re-
cently, a minimal realization procedure based on
appropriate controllability /observability forms has
been proposed in [24]. This approach appears to be
well suited to be turned into a reliable numerical
procedure. However, as already mentioned before,
significant reductions of order can be often achieved
by using standard 1-D reduction techniques based
on orthogonal controllability /observability canon-
ical forms computed separately for each block of
A [10]. One additional particular aspect worth to
be mentioned in this context is the possibility to
exploit that frequently the S;; matrix in the re-
sulting LFT description (6) has most of its eigen-
values equal to zero (all eigenvalues are equal to
zero if S(p) is a polynomial matrix in p). Thus,
many of these eigenvalues are uncontrollable or un-
observable and therefore a special order reduction
procedure can be devised to remove in a first step



only those uncontrollable/unobservable eigenvalues
which are zero (see [20] for more details).

In summary, the main computational challenges for
uncertainty modelling are:

e symbolic generation of low order LFT repre-
sentations for a complete set of uncertain air-
craft parameters (about 20)

e developing efficient numerical algorithms for
exact or approximate order reduction of large
order LFT models (orders about 200-300).

Both above aspects are very important to arrive
to low order LFT models to be further used for
the efficient evaluation of criteria for optimization
based controller tuning and assessment.

2.2. Low Order Aeroelastic Modelling

The development of accurate aircraft dynamics
models is a very complex multidisciplinary task in-
volving a multitude of distinct modelling activities.
High fidelity models of flying aircraft can be de-
rived from nonlinear Navier-Stokes partial differ-
ential equations describing the complex physics of
flows interacting with the aircraft body. Computa-
tional fluid dynamics (CFD) is the main tool to per-
form simulations of such models. Usually, quite ex-
pensive wind tunnel experiments complements the
theoretical modelling by providing values of un-
known model parameters, as for instance various
force and moment coefficients or control-surface ef-
fectiveness data. The overall simulation model in-
cludes also subsystem models for actuators, sensors,
various filters, propulsion.

A high fidelity aircraft model describes the com-
plete aerodynamical behavior of the aircraft, in-
cluding also structure dependent aeroelastic effects.
However, the complexity of CFD-based models is
tremendous. Finite-element based discretization
lead to models with up to 400,000 degrees of free-
dom, which are clearly beyond the usability for
flight controller design purposes. With various sim-
plifying assumptions (no viscosity, no friction in
flows, etc.), models of lower complexity (with up to
several thousands degrees of freedom) can be ob-
tained which are well suited to account for most
of aeroelastic effects. Such effects have significant
contributions to the overall dynamics of some mod-
ern aircraft to be developed in the near future, as
for instance, large civil transport aircraft or aircraft
with reduced structural weights but with potential
for static instability. Note that the resulting aeroe-
lastic models are usually large order linearized mod-
els integrating both rigid-mode and elastic degrees
of freedom. For details on high precision aircraft
modelling see for example [25, 26, 27].

The use of high-authority feedback control systems
leads often to a reduced frequency separation be-
tween the rigid-body modes and the elastic modes
of the controlled aircraft. The main concern in de-
signing flight controllers for elastic aircraft is the
avoidance of flutter, a self-excited and often de-
structive oscillation resulting from improper feed-
back design. Design criteria expressing flutter-free
(e.g. non-oscillating, stable) behavior of the closed-
loop aircraft are currently included among standard
requirements for flight controller tuning. To evalu-
ate such criteria, eigenvalue computations are usu-
ally performed. Thus to allow a cheap evaluation
of aeroelastic design criteria the need for accurate
low order aeroelastic models (orders up to several
tenth) arise in early design phases. In what fol-
lows, we discuss some of recent developments in
the model reduction techniques applicable for the
reduction of very large order linear systems, as for
instance aeroelastic aircraft models.

We assume that the original linearized system is
given in a state space form

& = Azxz+ Bu (7)
y = Czx+Du’

where x is the n-dimensional state vector, u is
the m-dimensional input vector and y is the p-
dimensional output vector. For convenience we de-
note the system (7) with the pxm transfer-function
matriz (TFM)

G(s)=C(sI —A)"'B+D (8)

as G := (A,B,C, D). Let G, := (A,, B,,C,, D,) be
an r-th order approximation of the original model
(r < n), with the TFM G,. = C,.(sI—A,) "' B,.+D,..
A large class of model reduction methods can be in-
terpreted as performing a similarity transformation
Z yielding

Z7'AZ|Z7'B7
CZ | D

and defining the reduced model G, as the leading
diagonal system (Ajq, By, C1, D). When writing
Z:=[TU]and Z7t := [LT VT]T then Il = TL
is a projector on 1" along L and LT = I,.. Thus the
reduced system G, is given by

(4, B, Cy, D) = (LAT, LB, CT, D). (10)

Partitioned forms as above can be used to construct
a so-called residualized (or singular perturbation)
approzimation (SPA). The matrices of the reduced
model in this case are given by

A, = Ap — ApAsy) Ao,

B, = B;— A3A5) B, (11)
C, = C1—C2A5 Ao,

D, = D—CyAy, Bs.



For the SPA (11) we have G(0) = G,(0). Thus,
SPAs preserve the DC-gains of stable original sys-
tems.

An important class of methods are based on the
modal approach proposed initially by Davison [28]
and extended with several many new variants.
[29, 30, 31]. The use of the modal approach to
reduce aeroelastic models has been discussed in
[27, 32]. The importance of the modal approach
as a useful model reduction technique resides in
its applicability to reduce very large order systems
as those arising from aeroelastic modelling. The
method can also handle models with lightly damped
modes and even unstable systems. Note that in case
of very large order systems, the modal technique is
one of the very few applicable methods.

The basic formulation of the modal approach is
a particular case of the general transformation
method (9), where A13 = 0 and Ay = 0. The
eigenvalues of A are separated according to a cer-
tain modal dominance criterion. The leading diago-
nal matrix Aq1 contains the dominant modes which
are retained in the reduced model, while the trailing
block Agy contains the non-dominant modes which
are deleted from the model. The residualization
formulas (11) can also be used in conjunction with
the modal approach.

The critical computation in the modal approach is
the determination of the transformation matrix Z
to achieve the modal separation. Fortunately, in the
case of aeroelastic models, the state matrix A of the
original description (7) has often an almost sepa-
rated block-diagonal structure, thus to perform the
modal separation basically means to reorder small
diagonal blocks (most of them 2 x 2) according to
a modal dominance criterion. Several dominance
criteria can be used simultaneously, as for example,
separation of modes with respect to the expected
crossover frequency and/or with respect to their
contribution to the input-output system dynamics
(see for instance [29)]).

In spite of its ability to reduce significantly large
order aeroelastic models, the modal approach has
some important limitations which prevent its us-
ability as a general purpose method. One aspect
is the lack of a generally applicable modal domi-
nance analysis method. For example, systems with
many clustered (nearly equal) eigenvalues represent
difficult cases for modal separation on basis of sim-
ple criteria as those used in [29, 30]. To handle such
cases, an enhanced modal approach based on a new
dominance measure has been proposed in [31]. An-
other weakness of the modal approach is the lack
of a guaranteed bound for the approximation error.
This has as consequence the frequent need to ex-
periment with different approximations on a trial

and error basis. Thus, we see the main role of the
modal approach in the context of reducing high or-
der aeroelastic models to serve for a preliminary
order reduction, achieving reductions of the model
order from several thousands to several hundreds.
For further reduction more powerful methods with
guaranteed bounds are necessary.

The use of the balanced truncation approximation
(BTA) method [33] to reduce acroelastic models has
been discussed in [32], where several pros and cons
are formulated. The main strength of balancing re-
lated approaches lies in the guaranteed error bound
for the approximation error and the guaranteed sta-
bility of the reduced system. The approximation er-
ror bound can be computed on basis of the Hankel-
singular values of the system G = (A, B, C, D), de-
fined as [34]

oi=[N(PQ)Z, i=1,...m,

where P and @ are the controllability and observ-
ability Gramians, respectively, satisfying the Lya-
punov equations

AP +PAT + BBT = 0

ATQ+ QA+ CTC = 0. (12)

If we assume o;, ¢ = 1,...n decreasingly ordered

0'1>

"20-7“>0-’I‘+12"-20-n207

then the H.,-norm of the approximation error for
an r-th order BTA G, = (A, By, Cy, D) is bounded
as follows [34]

IG—Grlle <2 > o

i=r+1

The computation of the matrices of the reduced sys-
tem requires only the determination of the trunca-
tion matrices L and T in (10), and not of the full
matrix Z in (9). These matrices can be determined
using the Cholesky factors of the non-negative def-
inite Gramians P = S7S and Q = RTR. From the
singular value decomposition

SRT = [ U, U, |diag(S1,%0) [ Vi Vo ]"
where
b} :diag(017~~~7ar)v Yo = diag(0r+1a~~-aan)a

the truncation matrices can be determined as [35]

L=x7"?VI'r, T=5TUu;x;""

Since standard techniques to solve Lyapunov equa-
tions do not in general exploit the usual sparse-
ness of A, the solution of the Lyapunov equations
(12) for large n, say n > 200 rise prohibitive stor-
age requirements O(n?) and a tremendous compu-
tational burden O(n?). One way to try to over-
come this situation is to determine by iterative tech-
niques low rank approximations to the Gramians.



If P. = X,P.XT and Q, = Y,Q, YT are rank r
approximate solutions of the Lyapunov equations
(12), where X, and Y, are n x r matrices, and
]ST and @r are r X r positive definite matrices,

then the approximate Gramians can be expressed
as P, = 8TS,. Q, = RTR, with S, = 5, X7 and
R, = ETYTT, where §T, ET are Cholesky factors
satisfying ﬁr = §TT§T and er = ]SJET From the
singular value decomposition

SR = U5, V)"
the expressions of the truncation matrices result as

L=>"*VIRYT,  T=Xx,5"U5x;"%

The computational complexity of this approach is
O(nr?) and the additional memory requirement is
O(nr).

Although the above approach does not guarantee
theoretically the stability of the resulting reduced
order approximation, in some practical applications
(see for example [36]) the use of this method in
conjunction with Krylov subspace techniques led
to useful low order stable approximations. The
computation of low order approximations of the
Gramians relies on well established iterative meth-
ods. The matrices X, and Y, result as orthogo-
nal bases for certain r-dimensional subspaces of the
Krylov subspaces Ky(A, B) and Ky (AT, C7T), re-
spectively, where

Ki(A,B) :=1Im|[B,AB,...,A*"'B]

and r < min{km, k’p}. For instance, the computa-
tion of X,. can be performed by using the iterative
Arnoldi process (if m = 1) or block-Arnoldi process
(if m > 1). The stopping criteria for the Arnoldi
iterations are related to the achievable residual of
the corresponding Lyapunov equation. The compu-
tation of the reduced order matrix P, can be done
according to the Galerkin orthogonality condition,
by solving an rth order dense Lyapunov equation,
or using the general minimum residual (GMRES)
condition, in which case, a nonstandard matrix lin-
ear equation must be solved [37]. Recent enhance-
ments of the GMRES approach [38] allow to cope
with the stability preservation requirement of the
reduced order model. However, the enhanced ap-
proach requires the solution of a 2-blocks minimum
distance problem [39] involving the solution of a
dense Riccati equation of order 7.

Along the same lines, methods have been proposed
for single-input single-output systems using differ-
ent iterative schemes to determine the basis matri-
ces X, and Y, for the underlying Krylov spaces. By
using appropriate restart techniques for the Lanc-
zos method, stable reduced models can be gener-
ated [41]. A similar technique has been employed
for the Arnoldi method in [42].

Recently, a generalization of Smith’s iterative
method led to a different algorithm to compute low
rank non-negative definite approximations of the
solutions of stable Lyapunov equations [40]. This
method allows to determine the Gramians directly
in the factorized form P, = X, X! and Q, = Y, Y1
where X, and Y, are n X r; and n X ro matrices, re-
spectively, with » < min{ry,r3}. From the singular
value decomposition
XTY, = [ Uy U, |diag(S1,%0) [ Vi Vo T

where ¥ is r X r, the truncation matrices can be
determined as

L=x7"?VvIYT, T=XU53;"%

In summary, the model reduction of large scale sys-
tems like aeroelastic models raises several impor-
tant computational challenges:

e solution of large order sparse or dense model
reduction problems using the standard ap-
proach (involving the solution of large Lya-
punov equations of order up to several hun-
dreds)

e development of approximation techniques for
very large order (up to several thousands)
sparse model reduction methods (e.g. using
Krylov subspace techniques) which guarantee
the stability of reduced models.

Although several research groups are actively work-
ing on different aspects of these problems, unfortu-
nately at present no completely satisfactory model
reduction approach exists for large order systems.

3. Computational Challenges in Robust
Flight Controllers Design

The tuning problem of a robust flight control law
can be always formulated as a multi-criteria opti-
mization problem to minimize simultaneously sev-
eral criteria expressing design specifications (or con-
straints) and FCS performance requirements. Per-
formance robustness requirements impose addition-
ally the satisfaction of all requirements in the pres-
ence of arbitrary variations of some uncertain pa-
rameters. The control law for a specific flight
mission (e.g. longitudinal flight) can be usually
parametrized by a set of free parameters, called
tuners, grouped in a vector T. If the uncertain
model parameters are grouped in a vector p, then
each design criterion ¢;, for i = 1,2,...,r, is gener-
ally a function of both T and p. The simultaneous
minimization of several criteria can be formulated
as a “zero” goal-attainment problem [43]
minimize 7y
v, T
such that ¢;(T,p) —w;y <0,i=1,...,r,

(13)



where w = [wy,...,w,] is a weighting coefficients
vector characterising the relative trade-offs between
the criteria. The term w;7y introduces an element
of slackness into the problem, which otherwise im-
poses that the goals be rigidly met. Thus, hard
constraints can be easily incorporated by setting a
particular weighting coefficient to zero (i.e. w; = 0).

Since the criteria in (13) depend continuously on
the parameters in p, this problem is generally equiv-
alent to a nonsmooth semi-infinite optimization
problem
minimize 7y
7, T
such that &(T) —w;y <0, i=1,...,7,

(14)

where ¢;(T) := maxpep{c;(T,p)}, with P usually
being a compact multidimensional interval of IR.

Since each evaluation of a criterion represents it-
self a multi-parameter global optimization problem
with respect to the uncertain parameters, the so-
lution of semi-infinite optimization problems is a
notorously difficult and, in case of many uncertain
parameters, a computationally very involved prob-
lem [44, 45]. Standard techniques transform the
semi-infinite constraints in a large set of constraints
on a grid of parameter values. In a more sophis-
ticated setting, a sequence of successively refined
grids can be used. To evaluate criteria values in in-
termediary points, multi-dimensional interpolation
techniques can be used. The evaluation of some
constraints in a typical FCS design like overshoot,
rise time, damping, etc. involve at least a simulation
and an eigenvalue computation. Thus, even when
a rough approximation of the solution is computed
by optimizing on a coarse parameter grid, the over-
all problem (14) becomes intractable for more than
three-four continuously varying parameters. An ex-
haustive search in the parameter space P is even
less efficient when fine grids are used to convert the
continuous parameter variations into a very large
set of constraints in predefined grid points.

For the solution of many practical FCS tuning prob-
lems a much simpler approach can be usually em-
ployed. Here we try to justify, from the perspective
of semi-infinite optimization, the heuristic multi-
criteria approach used in [5] for the design of a
robust autopilot for the automatic landing of a
mordern cargo aircraft formulated as a robust con-
trol benchmark problem for RCAM [3]. A similar
approach has been also described in [46] in a dif-
ferent context. Both of these approaches can be
formalized as systematic optimization methodolo-
gies which, in many concrete applications, are able
to guarantee satisfactory solutions.

For FCS tuning problems, the worst-case parameter
combinations usually occur at vertex points in the

parameter space P or at the extreme points of the
flight envelope. Thus, it is usually possible to con-
vert the semi-infinite optimization problem over P
into a finite dimensional optimization by restricting
drastically the infinite parameter space to a repre-
sentative finite set Py C P of a few worst-case
parameter combinations and/or flight conditions.
This allows to replace the semi-infinite constraints
in (14) by a finite number of constraints defined by
the points in Py;,. With this replacement we ob-
tain a finite dimensional goal-attainment problem

minimize -~y
v, T
such that ¢;(T,p)—wiy <0, i=1,...,7,p € Ppin.

(15)

By solving the goal-attainment problem (15), we
get the best solution T* minimizing simultaneously
all criteria over the finite parameter set Py,. Note
that, T is in general a nonunique Pareto-optimal
(or noninferior) solution. For such a solution any
improvement in one criterion leads automatically to
a deterioration in another criterion. For the solu-
tion of (15), standard numerical methods for solving
nonlinearly constrained optimization problems can
be used. Well suited as solution method is SQP —
the sequential quadratic programming method [45]
(see also [47] for an overview of SQP).

The solution of the overall goal-attainment problem
(13) in the context of FCS design can be frequently
computed with a good approximation by using the
following iterative procedure:

0. Select an initial representative finite set Ppi,.

1. Solve the finite dimensional problem (15) to de-
termine the optimal tuner 7.

2. For the computed T™*, perform a worst-case pa-
rameter study for all constraints over a coarse
grid on P to select a set of worst-case parameter
combinations, Py orst-

3. If all constraints are satisfied in Pyorst, then fin-
ish; else Prin < Prin U Pyorst and go to 1.

In light of the methods surveyed in [45], this pro-
cedure belongs to the category of ”exchange meth-
ods” to solve semi-infinite optimization problems.
These methods iteratively update the finite set Py;p,
by adding new worst-case points. It could also
be conceivable to delete occasionally points from
Prin. The selection of the initial Py, at Step 0
can be done in several ways. For instance, open-
loop simulations can be performed to select extreme
cases on basis of step responses. Since the set Py;p,
is updated iteratively, in most cases it is enough
to choose a single parameter set (e.g. the nominal
one) to start the iterations. Note that according
to [b, 46], the parameter combinations in Py;, de-
fine multi-models which allow an efficient evaluation



of criteria based on linearized models. The result
of the optimization at Step 1, T, defines a con-
troller for the FCS, which is possibly not feasible
in all points of P. The purpose of the parameter
study at Step 2 is to select efficiently new parame-
ter combinations which are not covered by the ex-
isting ones in Py;,. This time, simulations of the
closed-loop system can serve to select worst-case pa-
rameter combinations. Alternatively, optimization
driven worst-case search procedures can be used.
The optimization procedure can be finished if no
constraint violations occur. To cope with higher
accuracy requirements, a grid refinement can be
added to step 3, followed by resuming Step 2 on
the finer grid.

We present shortly some of results obtained in [5]
for the design of a robust longitudinal autopilot for
the automatic landing of a modern cargo aircraft.
This problem has been formulated as a part of the
robust control benchmark problem for RCAM ([3].
For controller design the used 12 tuners were the
diagonal entries in the state and control weighting
matrices defining a state-feedback design using the
LQG-methodology. For controller tuning, 18 design
criteria have been defined to meet the formulated
design specifications along a prescribed landing tra-
jectory. As uncertain parameters in the RCAM,
the mass and two coordinates of the center of grav-
ity have been used. Three parameter combinations
have been selected to define Py;, with help of open-
loop simulations: a nominal one and two ”worst-
cases” selected on basis of extreme differences in
the shapes of step responses. This led to a multi-
criteria optimization problem with 3x 18 = 54 crite-
ria. It is a remarkable result of [5] that with help of
only three parameter combinations, all criteria have
been met over the whole range of allowed values of
the uncertain parameters. Moreover, post-design
assessment results [6] showed that the multi-criteria
based design of [5] had the best robustness proper-
ties among the 12 designs reported in [2].

In summary, the main computational challenge in
optimization based robust FCS design is the ef-
ficient solution of semi-infinite multi-criteria opti-
mization problems. Heuristic approaches exploit-
ing particular problem features can help to reduce
drastically the computational complexity. A con-
crete FCS-design [5] performed for the GARTEUR
Robust Flight Control Design Challenge illustrated
the applicability of such an approach.

4. Computational Challenges in the
Assessment of Flight Controllers

While in the design of control systems satisfactory
suboptimal solutions (corresponding to local min-
ima) are generally acceptable, for the flight con-

troller assessment, critical performance criteria like
stability must be fulfilled over the whole flight enve-
lope and for any possible combination of uncertain
parameters. Thus, the performance robustness as-
sessment of designed controllers must be formulated
as a global optimization problem of the form

maximize ¢(p)

peP (16)

where the maximization of the performance specifi-
cation ¢(p) is equivalent to an optimization driven
search for the ”worst-case” parameter combination
in P, a compact multidimensional interval of IR.
The controller robustness assessment problem can
be formulated simultaneously for several perfor-
mance measures as well.

The most straightforward way to perform robust-
ness assessment is to evaluate the function c¢(p) on
a grid of values in P. However, the computation
time required goes exponentially with the dimen-
sion. For ¢ = 4, 16 and 64, the time needed to check
only the 29 vertices on a typical workstation is 0.01
seconds, 40 seconds, and 3.6 x 10® years, respec-
tively. Thus, evaluating any robustness measure is
NP hard in the number of parameters and obviously
the computational costs for large problems are too
high to be afordable in industrial practice.

There are several approaches to overcoming this ap-
parent intractability. Monte Carlo simulation has
been the industry standard for decades as an in-
direct approach for robustness analysis. The main
advantage of Monte Carlo approach lies in that it
determines ”soft” bounds on hypothesis test whose
accuracy does not depend on the dimension of the
parameter space. The only involved cost is that of
evaluating c¢(p) a number of times to get statisti-
cally significant sample size. The main difficulty
with the Monte Carlo soft bounds approach is it
doesn’t actually compute the probability distribu-
tion of the performance, but only indirectly assess
it. This is especially a serious problem in FCS as-
sessment, where we simply want to know if any-
thing bad can happen for some set of parameters
and not only to have a probability that a controller
has acceptable performance for, say 99% of the un-
certainty set P, as has been observed on basis of
95% of the performed experiments. For a perti-
nent discussion of the above aspects and possible
approaches to compute “hard” bounds on proba-
bility measures see [48].

In what follows we discuss how to compute hard
bounds on performance measures and how to re-
fine the bounds by using branch and bound (B&B)
technique. This technique is particularly useful for
performance criteria for which easily computable
lower and upper bounds exist. The simplest B&B
scheme is to choose a branching variable and split-



ting the corresponding interval in two equal parts,
thus creating two new independent problems on
which bounds are computed. A branch can be
pruned when its local upper bound is lower than at
least one of local lower bounds in other branches.
Note that without pruning, the computational com-
plexity of branching is exponential. More sophisti-
cated algorithms would optimize both the chosen
variable as well the location of the interval cut.

As already mentioned, the B&B approach is gen-
erally applicable if lower and upper bounds can be
easily computed. Well suited for using B&B is the
stability robustness measure expressed by the struc-
tured singular value p [49, 50]. Although the com-
putation of p is an NP hard problem, upper and
lower bounds can be computed in polynomial times.
Another application area is when the criterion to
be minimized can be expressed only as elementary
operations with uncertain variables. In this case in-
terval computations can be used to determine ap-
propriate bounds for using the B&B approach.

Post-design stability robustness results for the
RCAM benchmark problem are reported in [6].
The computations have been performed using the
RCAM LFT-based uncertainty model [7] connected
in feedback configurations with all of 12 designed
controllers (see [2]). The same uncertain param-
eters have been used as for the controller design,
that is, the mass and two coordinates of the cen-
ter of gravity. The p-analysis provided for RCAM
the true magnitudes of the worst-case destabilizing
parameter combinations, so that no B&B refining
was necessary. Values of u greater than 1 resulted
only for three of the 12 controllers. In each case, it
was possible to determine the corresponding worst
parameter combination leading to instability. This
combination was always lying in a vertex of the pa-
rameter space and nonlinear simulations confirmed
the loss of stability in each case.

Since lower bounds are always readily available (for
instance by choosing at random a parameter value,
or better, performing a local maximization), the ap-
plicability of B&B is usually restricted by the lack
of easy to compute approximations for the upper
bound. Therefore, the B&B method is not appli-
cable for more general FCS design criteria, whose
evaluations involve possibly nonlinear simulation,
trimming and eigenvalue computation, or frequency
response calculation. For such criteria, more gen-
eral global optimization methods have to be used.

The simplest approach for general criteria is to use
a local minimizer as local worst-case search engine,
performing optimizations initialized in many differ-
ent points of the parameter space. This approach
has been successfully used for an alternative sta-
bility robustness analysis performed directly on the

nonlinear closed-loop aircraft model. This model
has been built by coupling the nonlinear aircraft
model (1) with each of the designed 12 controllers
for RCAM. As a measure of the stability degree,
the minimum damping of the eigenvalues has been
used. A single evaluation of the minimum damp-
ing for a given parameter value p and a specified
flight-condition involves trimming and linearizing
of the nonlinear model in the found equilibrium
point, followed by the computation of the eigen-
values of the closed-loop state dynamics matrix.
The local optimization has been performed repeat-
edly from different initial points, trying to destabi-
lize the closed-loop system by minimizing the min-
imal damping within the operating envelope over
all uncertainty-parameter combinations. The ob-
tained results agree well with those obtained with
the p computation.

Although usually feasible, the local search approach
can not provide a 100% guarantee for assessment
results. Obviously, the only way to obtain such a
guarantee is to use global optimization algorithms
like genetic algorithms (GA) [51] or simulated an-
nealing (SA) [52] for performance robustness anal-
ysis. The study of these algorithms in the context
of stability robustness analysis [49] demonstrated
that both methods are easy to use and can pro-
vide reasonably good answers for that particular
problem. The comparison with the B&B approach
shows that GA and SA are not competitive with
the B&B method with respect to computational ef-
ficiency. Still, GA and SA are the only methods
which can be used in a more general computation
like that discussed in the previous paragraph.

In summary, the computational challenges for the
assessment of performance robustness of flight con-
trollers have particular features depending on the
type of global optimization problems to be solved:

e for the computation of hard bounds in special
cases (e.g. assessment of stability robustness),
the B&B technique is the main favorite; here
it would be interesting to extend the applica-
bility of this technique for the cases when no
easy evaluation of upper bounds is possible

e for global optimization based assessment of
general robust flight control design criteria,
both GA and SA can be used, but the cost
to use these methods could be very high for
many practical applications; here also, a com-
bination with the more efficient B&B tech-
nique would be desirable.
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