OPTIONS FOR DECARBONIZATION OF THE INDUSTRIAL SECTOR

SUSTAINABLE
HIGH-TEMPERATURE PROCESS HEAT AS KEY
TECHNOLOGY

16th German-Japanese Economic Forum Hannover Messe, 17.04.2023

Göksel Özuylasi

German Aerospace Center (DLR)

Institute of Low-Carbon Industrial Processes

CO₂ - Emissions from 2015 to 2020 in Germany

- Industry the second-largest CO₂-emitter in Germany after Energy Sector
- Decrease of CO₂-emissions too low

Approx. 75 % of industrial emissions are energy-related CO₂-emissions

- Generation of the electricity used
- Use of fuels to provide energy
- → Example: process heat, steam, mechanical work

Source: National Inventory Report (Germany), Own evaluation

Institute of Low-Carbon Industrial Processes

Institute of Low-Carbon Industrial Processes

Aim

Reduce CO₂- and pollutant emissions from industrial processes and power plants

Mission

Research and development for a successful energy transition in industry

CO₂-Reduction Options for Industry

Nach Leipprand et al., DLR, FVEE-Tagung 2020

Sustainable Process Heat Classification of technologies – based on temperature range

Sustainable Process Heat Availability of technologies

up to ~100 °C

up to ~500 °C

> 500 °C

Well established technologies available

Applications

- Food industry
- Paper ...

Tech

- District heating
- Heat Pumps
- Solar-thermal ...

R&D

System integration and optimization

New product development required

Applications

- Industrial heating networks
- Drying processes
- Rubber

R&D (Low TRL, high risk)

- High-Temp. Heat Pumps
- Concentrated solar-thermal
- Storage technologies
- Hybrid approaches
- System integration and optimization

Established technologies available

Applications

- Metals
- Cement ...

Tech

- Electrical energy, hydrogen or synthetic fuels
- → Maximum efficiency required

R&D

System integration and optimization

Hydrogen / Biomass in medium-temperature range

Not covered here, but...

- Green hydrogen is one of the most expensive energy carriers
- Biomass is a limited resource

Medium-temperature range

High-Temperature heat pumps can help save hydrogen and biomass in this temperature range

Technology assessment based on ...

- Technological boundary conditions
- Process requirements
- Political and legal matters
- Economic viability
- Skilled labor shortage
- Social acceptance

- Very dynamic environment
- It's crucial that decisions don't lead to stranded assets

Research goal of DLR:

- Provision of CO₂-neutral high-temperature process heat of relevant scale for industry
 Sink-temperature: > 300 °C (up to 500 °C), power: Megawatt range
- Development of the HTHP-system and the main components

Pilot plant "CoBra" (Cottbus Brayton)

"First of its kind" – pilot plant

- Performance data:
 - 280 °C
 - 180 kW_{th}
 - Working medium Air
 - Also unique:
 - Cooling @ 40 °C
 - Cooling capacity 60 kW

First operation in May 2023

Pilot plant "ZiRa" (Zittau Rankine)

"First of its kind" – pilot plant

- Performance data:
 - 200 °C
 - 860 kW_{th}
 - COP = 3.5
 - Working medium water steam

First operation in 2024

Contact

Thank you!

Walther-Pauer-Straße 5 03046 Cottbus

Mandauhöfe, Haus 9 Äußere Oybiner Straße 14/16 02763 Zittau

Institute of Low-Carbon Industrial Processes

German Aerospace Center (DLR) Dr. Göksel Özuylasi
Project manager High-Temp. Heat Pumps
Goeksel.Oezuylasi@dlr.de
+49 3583 58545 04

Prof. Dr. Uwe Riedel
Director
Uwe.Riedel@dlr.de
+49 355 355645 02