Köln

Eu:CROPIS: Tomatenzucht im Weltall

Eu:CROPIS

Donnerstag, 24. April 2014

Autoplay
Info An
Info Aus
Bildinformation
Alle Bilder
Schließen
Vollbild
Normal
Vorheriges Bild
Nächstes Bild
Bild {{index}}/{{count}}
Tips:
<Escape>, um fullscreen zu beenden.
  • Eu:CROPIS

    Satellit Eu:CROPIS

    Der Satellit Eu:CROPIS des Deutschen Zentrums für Luft- und Raumfahrt (DLR) soll 2016 starten. Mit an Bord: Zwei Gewächshäuser, in denen Bakterien und Algen künstlichen Urin in Dünger umwandeln, damit Tomatenpflanzen wachsen können. Durch eine unterschiedliche Rotationsgeschwindigkeit um die eigene Längsachse können die Schwerkraft von Mond und Mars simuliert werden.

  • Eu:CROPIS

    Tomaten für Mond- und Marshabitate

    Mit der Mission Eu:CROPIS des Deutschen Zentrums für Luft- und Raumfahrt (DLR) wollen die Wissenschaftler erproben, ob Tomaten in einem geschlossenen Lebenserhaltungssystem unter Mars- und Mondbedingungen wachsen und Früchte tragen. Der Satellit mit zwei Gewächshäusern an Bord soll 2015 ins All starten.

  • RAMIS

    Strahlungsdetektor RAMIS

    Mit den Strahlungsdetektoren RAMIS messen Wissenschaftler des Deutschen Zentrums für Luft- und Raumfahrt (DLR) das Strahlungsfeld während der Mission Eu:CROPIS.

Eine Überlebensgemeinschaft aus Bakterien, Tomaten und einzelligen Algen, künstlicher Urin und ein Satellit, der mit seiner Rotation um seine Achse die Schwerkraft von Mond und Mars simulieren kann - das sind die Bestandteile der Mission Eu:CROPIS (Euglena and Combined Regenerative Organic-Food Production in Space) des Deutschen Zentrums für Luft- und Raumfahrt (DLR). 2016 sollen zwei Gewächshäuser ins Weltall starten, in denen ein kombiniertes Lebenserhaltungssystem das Abfallprodukt Urin zu Dünger verwertet und so das Wachstum von Tomaten für Mond- und Marshabitate sowie Langzeitmissionen ermöglicht. Die Mission wird über ein Jahr laufen, anschließend verglüht der Satellit in der Atmosphäre.

Die Wissenschaftler des DLR setzen dabei auf die Kooperation von Bakterien und der einzelligen Alge Euglena gracilis, um die Pflanzen mit wichtigen Nährstoffen zu versorgen. In regelmäßigen Abständen wird künstlicher Urin in das System gegeben. Dieser wird über einen Wasserkreislauf durch die Lavaplatten des Rieselfilters C.R.O.P. geleitet, in dem unzählige Mikroorganismen leben und hungrig auf diese Nahrung warten. Diese Bakterien zersetzen das für Pflanzen giftige Ammoniak des Urins zunächst in Nitrit und anschließend in Nitrat. Dieses wiederum ist für die Tomatenpflanzen der richtige Dünger, um Früchte zu tragen und neue Samen zu produzieren. Um den plötzlichen Anstieg von Ammoniak abzufangen, kommen die Euglena der beteiligten Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) ins Spiel: Die Augentierchen sind unempfindlich gegen Ammoniak und helfen beim raschen Abbau. "Wir nutzen die Eigenschaften von Organismen, um Stoffe umzuwandeln - die wir wiederum für die Erhaltung anderer Organismen benötigen", erläutert der wissenschaftliche Leiter der Mission, Dr. Jens Hauslage vom DLR-Institut für Luft- und Raumfahrtmedizin.

Wachsen unter Mars- und Mondbedingungen

Um im Weltraum die unterschiedliche Schwerkraft von Mars und Mond simulieren zu können, entwickeln und bauen die Ingenieure des DLR-Instituts für Raumfahrtsysteme und des DLR-Instituts für Faserverbundleichtbau und Adaptronik einen 250 Kilogramm leichten Satelliten, der während des Flugs in rund 600 Kilometern Höhe um seine Längsachse rotiert. Damit wirkt im Inneren eine Zentrifugalkraft, die je nach Rotationsgeschwindigkeit entweder die 0,16-fache Erdgravitation wie auf dem Mond oder die 0,38-fache Erdgravitation wie auf dem Mars erzeugt. In den ersten sechs Monaten wird das erste der beiden Gewächshäuser unter Mondbedingungen in Betrieb sein, die nächsten sechs Monate ist das zweite Gewächshaus unter Marsbedingungen aktiviert. Beide befinden sich dabei in einem speziellen, aus Kohlenstofffaserverbund-Komponenten gefertigten Drucktank, der konstant einen Innendruck von einem Bar aufrechterhält.

Mit an Bord von Eu:CROPIS sind zudem zwei weitere Experimente: Das DLR-Institut für Luft- und Raumfahrtmedizin nutzt den Flug ins All für die Langzeitmessung der Weltraumstrahlung mit den Strahlungsdetektoren RAMIS (Radiation Measurement in Space). Das Strahlungsfeld im Weltraum ist gerade bei Langzeitaufenthalten im Weltall nicht nur für Astronauten ein limitierender Faktor, sondern wirkt auch auf jedes andere biologische System - seien es Pflanzen, Tiere oder Mikroorganismen. Mit RAMIS messen die DLR-Strahlenbiologen deshalb sowohl an der Außenwand als auch im Inneren des Satelliten das Strahlenfeld. Die Daten sollen sowohl als Grundlage für die Weiterentwicklung von Modellen des Strahlenfelds dienen als auch die Höhe der Strahlungsdosis erfassen, die während des Flugs auf die Eu:CROPIS-Lebensgemeinschaft einwirkt. Die amerikanische Weltraumbehörde NASA führt ein Experiment zur Photosynthese-Messung an Algen mit.

Gewächshäuser unter Beobachtung

Während der Mission werden unzählige Kameras und Sensoren erfassen, was im Inneren der Gewächshäuser abläuft: Wie verläuft das Wachstum der Tomaten und ihre Photosynthese? Welchen pH-Wert und welche Sauerstoffkonzentration hat das Wasser, das in einem Kreislaufsystem die Stoffe durch das gesamte Gewächshaus transportiert. Weitere Kameras haben die einzelligen Algen, ihr Schwimmverhalten und somit ihre Wahrnehmung von Schwerkraft im Blick. In regelmäßigen Abständen werden Proben genommen und vollautomatisch auf genetischer Ebene analysiert.

"Wir wollen demonstrieren, dass die Nutzung von Abfallprodukten in diesem Fall zur Tomatenzucht auch bei reduzierter Schwerkraft auf Mars und Mond und bei Langzeitmissionen möglich ist. Die Experimente an Bord von Eu:CROPIS werden wichtige Ergebnisse liefern, um ein Überleben der Menschheit in lebensfeindlichen Räumen zu ermöglichen - sei es im Weltraum oder auf der Erde", sagt Dr. Jens Hauslage. So wird der Rieselfilter C.R.O.P. derzeit bereits in der Landwirtschaftlichen Fakultät der Universität Bonn (Agrohort) erfolgreich eingesetzt, um aus Abfällen wertvollen Dünger zu gewinnen.

Zuletzt geändert am:
28.04.2014 11:17:17 Uhr

Kontakte

 

Manuela Braun
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Kommunikation, Redaktion Raumfahrt

Tel.: +49 2203 601-3882

Fax: +49 2203 601-3249
Dr. Jens Hauslage
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Luft- und Raumfahrtmedizin

Tel.: +49 2203 601-4537
Hartmut Müller
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Raumfahrtsysteme

Tel.: +49 421 24420-1257