Missionen

Yardangs im Danielson-Krater: Zeugen von Klimaschwankungen auf dem Mars?

Donnerstag, 7. Juni 2012

Autoplay
Info an
Info aus
Informationen
Schließen
Vollbild
Normal
zurück
vor
{{index}}/{{count}}
Tipp:
<Escape>, um fullscreen zu beenden.
  • Perspektivische Ansicht des Danielson%2dKraters

    Perspektivische Ansicht des Danielson-Kraters

    Aus den schräg auf die Oberfläche gerichteten Stereo- und Farbkanälen des Kamerasystems HRSC auf der ESA-Sonde Mars Express können realistische, perspektivische Ansichten der Marsoberfläche erzeugt werden. Das Bild zeigt einen Blick in den Danielson-Krater in der Region Arabia Terra mit seinen charakteristischen Yardangs. Yardangs sind mehr oder weniger stromlinienförmige Gesteinsrücken, die als Restberge von dieser Form der Erosion noch nicht gänzlich abgetragen wurden. Durch ihre meist parallele Anordnung lässt sich die Windrichtung erkennen, die während der Erosion vorgeherrscht hat.

  • Anaglyphenbild der beiden Krater Danielson und Kalocsa

    Anaglyphenbild der beiden Krater Danielson und Kalocsa

    Aus dem senkrecht auf den Mars blickenden Nadirkanal des Kamerasystems HRSC und einem der vier schräg auf die Marsoberfläche gerichteten Stereokanäle lassen sich so genannte Anaglyphenbilder erzeugen, die bei Verwendung einer Rot-Blau-(Cyan)- oder Rot-Grün-Brille einen dreidimensionalen Eindruck der Landschaft vermitteln; Norden ist rechts im Bild. Das Bild zeigt die beiden nebeneinander liegenden Krater Danielson (ca. 60 Kilometer Durchmesser) und Kalocsa (ca. 33 Kilometer Durchmesser) in der Region Arabia Terra. Der Danielson-Krater ist geprägt von zahlreichen so genannten Yardangs, der kleinere Kalocsa-Krater zeigt diese nicht. Sein Kraterboden liegt etwa 1.000 Meter höher als der des Danielson-Kraters.

  • Topographische Übersichtskarte der Region Arabia Terra

    Topographische Übersichtskarte der Region Arabia Terra

    Die Region Arabia Terra im Übergang vom Marshochland zur nördlichen Tiefebene ist geprägt von zahlreichen Kratern, die mit geschichteten Sedimenten gefüllt sind. Die Stereokamera HRSC an Bord der ESA-Raumsonde Mars Express fotografierte am 19. März 2012 die beiden Krater Danielson und Kalocsa während ihres 10.468. Orbits. Die hier dargestellten Szenen befinden sich in dem kleineren Rechteck.

  • Farbdraufsicht auf die beiden Krater Danielson und Kalocsa in der Region Arabia Terra

    Farbdraufsicht auf die beiden Krater Danielson und Kalocsa in der Region Arabia Terra

    Mit dem senkrecht auf die Marsoberfläche gerichteten Nadirkanal und den Farbkanälen des Kamerasystems HRSC auf der ESA-Raumsonde Mars Express wurde diese Farb-Draufsicht erzeugt; Norden ist im Bild rechts. Arabia Terra markiert die Übergangszone zwischen dem südlichen Marshochland und der Tiefebene auf der nördlichen Hemisphäre. Wie viele Krater in der Arabia Terra-Region ist der Danielson-Krater mit geschichteten Sedimenten gefüllt, die im Laufe der Zeit aber zum Teil wieder stark abgetragen wurden. Die so entstandenen Geländeformen werden „Yardangs“ genannt. Die Wirkung des Windes ist auch an einem 30 Kilometer langen Dünenfeld im Krater Danielson zu erkennen, das sich allerdings erst in der jüngeren geologischen Vergangenheit gebildet hat. Die dunkle Färbung rührt vermutlich von vulkanischem Material her. Auffallend ist die mächtige Lavadecke im unteren Bildteil (östlich der beiden Krater) und eine Geländestufe, die den Übergang in ein tiefer liegendes Terrain im Bildabschnitt oben links (Südwesten) markiert.

  • Topographische HRSC%2dBildkarte der Krater Danielson und Kalocsa

    Topographische HRSC-Bildkarte der Krater Danielson und Kalocsa

    Mit der Stereokamera HRSC lassen sich digitale Geländemodelle ableiten, die mit Falschfarben bildhaft die Topographie der Region erkennen lassen. Die Zuordnung der Höhen ist an einer Farbskala links oben abzulesen; Norden ist im Bild rechts. Die Höhenangaben beziehen sich in Ermangelung eines Meeresspiegels auf das so genannte Areoid, eine modellierte Äquipotentialfläche, auf der überall die gleiche Anziehungskraft in Richtung des Marsmittelpunktes wirkt. Gut zu erkennen sind die Höhenunterschiede der beiden Kraterböden: der Boden des Danielson-Kraters (ca. 60 Kilometer Durchmesser) liegt etwa 1.000 Meter tiefer als der des kleineren Kalocsa-Kraters (ca. 33 Kilometer Durchmesser).

Am 19. März 2012 nahm die vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) betriebene,  hochauflösende Stereokamera HRSC auf der ESA-Raumsonde Mars Express zwei nebeneinander liegende Krater in der Region Arabia Terra auf, die sehr unterschiedlich sind: der Danielson-Krater  (ca. 60 Kilometer Durchmesser)  ist geprägt von zahlreichen so genannten Yardangs, der kleinere Kalocsa-Krater (ca. 33 Kilometer Durchmesser) zeigt diese überhaupt nicht. Sein Kraterboden liegt etwa 1.000  Meter höher als der des Danielson-Kraters.

Arabia Terra markiert die Übergangszone zwischen dem südlichen Marshochland und der Tiefebene auf der nördlichen Hemisphäre. Wie viele Krater in der Arabia Terra-Region ist der Danielson-Krater mit geschichteten Sedimenten gefüllt, die im Laufe der Zeit aber zum Teil wieder stark abgetragen wurden. Die so entstandenen Geländeformen werden „Yardangs“ genannt. Yardangs sind mehr oder weniger stromlinienförmige Gesteinsrücken, die als Restberge von dieser Form der Erosion noch nicht gänzlich abgetragen wurden. Durch ihre meist parallele Anordnung lässt sich die Windrichtung erkennen, die während der Erosion vorgeherrscht hat.

Yardangs werden von den Sandkörnern, die der Wind mit sich führt, wie mit einem Sandstrahlgebläse aus dem Gestein „gefräst“. Wehen die Winde über einen längeren Zeitraum in die gleiche Richtung, können sie regelrechte „Düsen“ oder Windgassen bilden, die den Prozess beschleunigen. Der ungewöhnliche Name stammt aus der Sprache der Uiguren und bedeutet in etwa „steiler Sandwall“. Der schwedische Forscher Sven Hedin prägte den Begriff, nachdem er 1903 in der zentralasiatischen Lop Nor-Wüste solche Gesteinsformationen beobachtete.

Bei den Yardangs im Danielson-Krater muss der Wind vornehmlich aus nord-nordöstlicher Richtung geweht haben. Die Wissenschaftler vermuten, dass die Sedimente zunächst ebenfalls durch Wind in den Krater transportiert wurden und dort mit Wasser in Kontakt kamen. Dadurch verfestigten sie sich. Später, in einer trockenen Periode der Marsgeschichte, wurden sie dann wieder abgetragen. Manche Forscher vermuten, dass die Wechsellagen der Sedimente ein Hinweis auf Klimaschwankungen des Planeten sein könnten, die durch eine periodische Verschiebung der Rotationsachse des Mars ausgelöst wurden.

Die Wirkung des Windes ist auch an einem 30 Kilometer langen Dünenfeld im Krater Danielson zu erkennen, das sich allerdings erst in der jüngeren geologischen Vergangenheit gebildet hat. Die dunkle Färbung rührt vermutlich von vulkanischem Material her – von Vulkanasche oder von zu Sand und Staub verwittertem dunklen, vulkanischen Gesteinen. Es bildet einen starken Kontrast zur typischen ockerfarbenen Marsoberfläche.

Einschlagskrater als Gradmesser für die Tiefe von Grundwasser-Vorkommen?

Der kleinere Kalocsa-Krater zeigt hingegen ein anderes Bild. Hier sind keine geschichteten Sedimentablagerungen zu erkennen. Möglicherweise ist seine geringere Tiefe der Grund dafür. Der Danielson-Krater ist etwa 1000 Meter tiefer als der Kalocsa-Krater und könnte damit ein tiefer liegendes Grundwasservorkommen erreicht haben, was zur Sedimentverfestigung geführt haben könnte.

Ebenfalls auffallend ist die mächtige Lavadecke im unteren Bildteil (östlich der beiden Krater) und eine Geländestufe, die den Übergang in ein tiefer liegendes Terrain im Bildabschnitt oben links (Südwesten) markiert. Hier ragt ein Teil des Auswurfmaterials des kleineren Kalocsa-Kraters wie eine Landzunge in das tiefer gelegene Gebiet. Am Rand dieses Auswurfs ist ein kleiner, etwa fünf Kilometer großer, aufgefüllter Krater zu sehen. Das legt die Vermutung nahe, dass sich die Auswurfdecke einst weiter ins Vorland erstreckte. Dort ist außerdem eine Vielzahl kleiner noppenförmiger Hügel zu erkennen. Auch sie sind vermutlich Restberge eines ehemals weiter reichenden, höheren Oberflächenniveaus.

Bildverarbeitung und das HRSC-Experiment auf Mars Express

Die Aufnahmen mit der HRSC (High Resolution Stereo Camera) entstanden während Orbit 10.468 von Mars Express. Die Bildauflösung beträgt etwa 26 Meter pro Bildpunkt (Pixel). Die Abbildungen zeigen hiervon einen Ausschnitt bei 7 Grad nördlicher Breite und 353 Grad östlicher Länge.
Die Farbansichten wurden aus dem senkrecht auf die Marsoberfläche gerichteten Nadirkanal und den Farbkanälen der HRSC erstellt; die perspektivische Schrägansicht wurde aus den Stereokanälen der HRSC berechnet. Das Anaglyphenbild, das bei Betrachtung mit einer rot-blau- oder rot-grün-Brille einen dreidimensionalen Eindruck der Landschaft vermittelt, wurde aus dem Nadirkanal und einem Stereokanal abgeleitet. Die in Regenbogenfarben kodierte Draufsicht beruht auf einem digitalen Geländemodell der Region, von dem sich die Topographie der Landschaft ableiten lässt.

Das Kameraexperiment HRSC auf der Mission Mars Express der Europäischen Weltraumorganisation ESA wird vom Principal Investigator (PI) Prof. Dr. Gerhard Neukum (Freie Universität Berlin), der auch die technische Konzeption der hochauflösenden Stereokamera entworfen hatte, geleitet. Das Wissenschaftsteam besteht aus 40 Co-Investigatoren aus 33 Institutionen und zehn Nationen. Die Kamera wurde am Deutschen Zentrum für Luft- und Raumfahrt (DLR) unter der Leitung des PI entwickelt und in Kooperation mit industriellen Partnern gebaut (EADS Astrium, Lewicki Microelectronic GmbH und Jena-Optronik GmbH). Sie wird vom DLR -Institut für Planetenforschung in Berlin-Adlershof betrieben. Die systematische Prozessierung der Daten erfolgt am DLR. Die Darstellungen wurden vom Institut für Geologische Wissenschaften der FU Berlin erstellt.
 

Zuletzt geändert am:
10.09.2012 08:50:54 Uhr

Kontakte

 

Elke Heinemann
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Kommunikation

Tel.: +49 2203 601-2867

Fax: +49 2203 601-3249
Prof. Dr. Ralf Jaumann
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Planetenforschung, Planetengeologie

Tel.: +49 30 67055-400

Fax: +49 30 67055-402
Ulrich Köhler
Deutsches Zentrum für Luft- und Raumfahrt (DLR)

DLR-Institut für Planetenforschung

Tel.: +49 30 67055-215

Fax: +49 30 67055-402