
Providing Context-sensitive Access to the Earth
Observation Product Library

Stephan Kiemle1, Burkhard Freitag2

1 German Aerospace Center (DLR), German Remote Sensing Data Center (DFD)

Oberpfaffenhofen, D-82234 Weßling, Germany
Stephan.Kiemle@dlr.de

2 University of Passau, Department of Computer Science and Mathematics
D-94030 Passau, Germany

Burkhard.Freitag@uni-passau.de

Abstract. The German Remote Sensing Data Center (DFD) has developed a
digital library for the long-term management of earth observation data products.
This Product Library is a central part of DFD’s multi-mission ground segment
Data and Information Management System (DIMS) currently hosting one
million digital products, corresponding to 150 Terabyte of data. Its data model
is regularly extended to support products of upcoming earth observation
missions. The ever increasing complexity led to the development of operating
interfaces which use a-priori and context knowledge, allowing efficient
management of the dynamic library content. This paper presents the
development and operating of context-sensitive library access tools based on
meta modeling and online grammar interpretation.

Keywords: context sensitivity, meta modeling, earth observation, object query
language, information management

1 Introduction

The Product Library developed and operated at the German Aerospace Center DLR
manages ever increasing amounts of digital earth observation products. The data
growth rates are challenging, and even more so the increasing diversity of data
structures and formats. Currently the Product Library already hosts about 80 different
product types.

To be able to efficiently manage the huge amount of heterogeneous data,
comprehensive human-machine interfaces and tools have been developed at DLR.
This paper addresses the development of context-sensitive, interactive operating
interfaces and presents operational experiences in the domain of earth observation
data management. In particular, we describe an interactive query editor that makes
intensive use of static a-priori information and meta information about the dynamic
library data model to help the user formulating his or her queries and ensure valid
interactions.

The following two sections give an overview of the architecture of the DIMS
system and describe the problem to be solved by providing context-sensitive access to
the Product Library. We will then discuss the underlying data model. Next, the
interactive query editor supporting ad-hoc metadata queries is presented, followed by
an evaluation section and a conclusion.

2 The Data and Information Management System DIMS

The Data and Information Management System (DIMS) has been developed as a
distributed multi-mission infrastructure for production, cataloguing, archiving,
ordering, accounting and distribution of earth observation products [1]. Fig. 1 shows
an overview of the system architecture with the main service components EOWEB®
user services, ordering control for the processing of user orders, production control
for the organization of production workflows, different flavors of processing systems
for the ingestion, value adding and publishing of earth observation data, the Product
Library, the product generation and delivery component and components for
monitoring and control.

Ordering Control

Product Library

Processing System

UIS Loader/Interface

Ingestion System Post-Processing

Production
Control

EOWEB User Information Service

Pickup
Point

Pickup
Point

Online/Offline
Prod. Gen.&Delivery

Publisher

Operating
Tool

Monitoring
& Alarm

External User

O
p

erato
r

Ex
te

rn
al

 S
ys

te
m

s

Ordering Control

Product Library

Processing System

UIS Loader/Interface

Ingestion System Post-Processing

Production
Control

EOWEB User Information Service

Pickup
Point

Pickup
Point

Online/Offline
Prod. Gen.&Delivery

Publisher

Operating
Tool

Monitoring
& Alarm

Operating
Tool

Monitoring
& Alarm

External User

O
p

erato
r

Ex
te

rn
al

 S
ys

te
m

s

Fig. 1. Data and Information Management System Overview

As a central component the Product Library is responsible for the consistent long-
term preservation of digital data products. It consists of an archive for the long-term

storage of primary data and an inventory for efficient storage of metadata. A
middleware encapsulates these components providing a comprehensive library
interface for the consistent management of digital data products. This middleware
decouples high-level information modeling and evolving low-level storage structures
such as the robot-driven media library and hierarchical storage management for
primary data and a relational database management system for metadata [2].

All product data can be accessed via the object oriented query language, extending
the OQL standard [3]. The Product Library provides several functions required for
data management. The Operating Tool (Fig. 2) is used to access these functions. All
items of a collection can be listed using the incremental query mechanism, individual
items can be searched by entering object query language conditions (including spatial
operators) and item details (metadata, component structure, browse images) can be
viewed. Items can be inserted, updated, retrieved and destroyed. Items can be
registered and unregistered (manipulating only the metadata but not the data files),
items can be re-located and un-archived (manipulating only the data files but not the
metadata).

Fig. 2. DIMS Operating Tool, Product Library Collection Browser with Menu of Product
Management Functions

The Operating Tool also provides configuration views allowing to manage the data
collection hierarchy, the item spaces used for modular data modeling in the inventory
and the archiving rules used to organize the file directory structure within the archive.

3 Problem Description

The tasks of product management include different operating use cases requiring
interactive access to the library content. Knowledge about the evolving information
model is absolutely essential e.g. when placing ad-hoc queries to the inventory or
when browsing the library content and generating population reports.

2000 2001 2002 2003 2004 2005 2006

Number of Item Types
500

400

300

200

100

Archive Size [TB]

50

100

2000 2001 2002 2003 2004 2005 2006

Number of Item Types
500

400

300

200

100

Archive Size [TB]

50

100

Fig. 3. Evolution of Number of Item Types and Library Archive Size

In the six years of operation of the DIMS Product Library, 500 item types (product
and component collections) have been configured using a total of 1970 attributes.
Growth and evolution of the Product Library is permanent. Fig. 3 shows how the size
of the information model, represented by the number of item types, increased in
parallel to the size of the library. The new German remote sensing mission TerraSAR-
X [4], for example, added 30 new product item types and will multiply, together with
other upcoming missions the current volume of the library by six in terms of number
of products and archive size, leading to a total number of 10 million product items
and 840 TByte of data in 2012. The variety of collections will significantly increase,
making the management of the huge amount of heterogeneous data more and more
difficult.

Operators use the DIMS Operating Tool, i.e., the graphical user interface for
unified operating of all DIMS services, to browse the library content and place ad-hoc
queries. Besides a hierarchical collection tree operators can view a textual
documentation to get orientation in the bits and pieces of the information model and
to get help on the use of the query language.

The librarian, i.e. one of the operators using the DIMS Operating Tool, is
responsible for the management of the earth observation data in the Product Library.
In this function he or she
• decides what products to store for the long term
• defines and maintains the data model
• configures the library according to the data model
• grants library access to users

• supervises data ingestion and access activity
• monitors library operations
• decides about data expiration and removal
• reports about library operations and use

Therefore the librarian needs comprehensive tools to access and monitor the
Product Library. The librarian has to be able to browse the library content, retrieve
individual items and perform actions on single or a set of identified products.

However, the available support for library operations and access turned out to be
insufficient. Operators require aware client applications with knowledge about the
underlying data model in order to cope with the increasing complexity in this dynamic
application environment. Operating clients should also give support in the formulation
of correct ad-hoc query expressions and take into account individual operator
preferences, habits and the activity history.

As one consequence, the DIMS Operating Tool had to be extended by a context-
sensitive interactive OQL query editor for ad-hoc queries as presented in this paper.

4 Data Model

In the following we will focus on the product data model to show how this knowledge
can be used for context-sensitive management tools supporting the librarian.

4.1 Object Model

Object orientation as it can be defined with the Unified Modeling Language (UML
2.0) is particularly well suited for the domain of earth observation data products.
Products are independent identifiable objects composed of other objects such as
browse images, primary data, processing logs and quality maps. Different products of
the same mission can inherit common properties. Higher level information products
derived from raw data products are associated to their “predecessors”. Beyond the
features described above there exist of course more properties of earth observation
products which can also be represented very well using an object model.

In its upper part Fig. 4 shows the basic product model underlying the Product
Library. Specific mission collections, products and product components are added by
extending the classes Collection, ProductGroup, Product, PrimaryData and
BrowseData,

ProductItem

BrowseDataPrimaryDataProductProductGroup

has

hasbundles

Collection belongsTo

<<instanceOf>> <<instanceOf>>

ENVISAT.SCIA.L3.VCD ENVISAT.SCIA.L3.VCD-QL

… …

1

* *
*

ProductItem

BrowseDataPrimaryDataProductProductGroup

has

hasbundles

Collection belongsTo

<<instanceOf>> <<instanceOf>>

ENVISAT.SCIA.L3.VCD ENVISAT.SCIA.L3.VCD-QL

… …

1

* *
*

Fig. 4. Basic Product Model (Extract) and Extension Example with Instances Symbolized by
Operating Tool Product Inspection and Browse Views

4.2 Data Model Evolution

In the dynamic environment of the Product Library the data management task of
configuring new product types for new missions is a nominal use case which has to be
supported without interruption of operations. By configuring the library it is possible
to define additional archiving rules extending the archive system as well as to extend
the product metadata model in the inventory system.

The inventory of the Product Library allows to configure object data models.
Collections are used to define the component structure of a product and to place
products in a freely configurable collection hierarchy allowing easy navigation e.g. by
mission, sensor or application domain. Item types are used to define product and
component types by specifying name, meaning, a list of identifying attributes and
describing attributes. Types can be set in a single-inheritance hierarchy, inheriting
properties of parent types. Attributes are defined by specifying name, meaning, data

type and other basic properties such as valids, value ranges and value constraints.
Attributes can be structured, meaning that their data type is not primitive but a
structure itself defining a list of slot attributes. Associations, aggregations and
composition references can be defined to link item types.

In a huge digital library system like the DIMS continuous change at various levels
has to be anticipated. In by far the most cases an existing data model will be extended.
One way to achieve this is to extend already defined item types (see Fig. 4). Of
course, also new item types can be defined as well. They can reuse already defined
attributes, structures and references if the meaning matches. This simplifies modeling
and leads to easier manageable data models.

4.3 Meta Model

The entities introduced above to define data models are called modeling elements. Of
course these elements can again be modeled and managed within the library. The
Product Library inventory therefore maintains the meta item space, a repository of all
modeling elements ever defined to build application data models.

The advantages of managing modeling elements in a distinct repository are
obvious: the modeling tools use this repository for safe persistence of configured data
models and they can browse already defined modeling elements to allow their reuse.

In the OMG meta model architecture [5], different levels of modeling are defined.
The M0 level represents the real world, in our case the earth observation products in
the Product Library.

The M1 level represents the data models of M0, here the product data model
consisting of types, attributes and references as described above. The M1 level of
modeling gives a common formal view on reality, allowing to describe, compare,
reuse and exchange application data items.

The M2 level represents the data models of M1, i.e., the meta model used to define
application data models. The M2 level of modeling gives a standard and formal view
on application data models, allowing to describe, compare, reuse and exchange
application data model elements.

The OMG meta model architecture also defines a M3 level again abstracting the
M2 level and intended to give an ubiquitous, generally applicable representation of
meta models to be able to even represent and formally define different ways of
defining meta models.

In practice, the Product Library uses the M0 level (product instances stored in the
library), the M1 level (product data model) and the M2 level (repository of modeling
elements). The M3 level is not used, since there is no need for different meta models
and thus not need to further abstraction. However, the repository containing the
modeling elements is self-contained, meaning the structures of the meta model are
themselves defined as instances in the meta model. Thus the repository of modeling
elements corresponds to both the M2 and the M3 level. This allows e.g. to access the
repository of modeling elements using the same tools and interfaces (such as the
object query language) as for accessing the product data models.

Fig. 5 shows an extract of the Product Library meta model hosting the modeling
elements. Based on this meta information on the configured data models, the

inventory is able to configure the physical storage layer, namely the underlying
relational database management system. The inventory middleware maps all access to
the product metadata such as object queries and insertions to corresponding
statements to the database systems, thereby decoupling application level interfaces
from the relational storage model. This allows an independent physical design, e.g.
choosing normalization to save space or de-normalization to save access time.

In addition, client applications can access the repository of modeling elements to
add model awareness and guide the user through the library data model.

MetaItem

Attribute StructureTypeComplexType

BasicAttribute StructureAttributeRelationship

identifiedBy

describedBy hasSlots* *

*
isOf
1

target

1

MetaItem

Attribute StructureTypeComplexType

BasicAttribute StructureAttributeRelationship

identifiedBy

describedBy hasSlots* *

*
isOf
1

target

1

Fig. 5. Product Library Meta Model (Extract)

5 The Interactive OQL Query Editor

5.1 Requirements

To support users in formulating ad-hoc queries, a context-sensitive OQL editor had to
be developed supporting
• query completion at an arbitrary input position
• error marking
• special token evaluation

If the proposal list includes special tokens which can be replaced with model
elements, this will be done. For example the special token <CT> will be replaced
with a list of available ComplexTypes stored in the repository.

• usage of meta model information
• template selection for the select or the where clauses of a OQL query.

5.2 Grammatical Context

The online interpretation of the query language grammar, i.e. the analysis of
expressions during the editing process, allows the evaluation and validation of human
inputs on three information levels.

Lexical correctness means that the query consists of valid tokens whereas
syntactical correctness guarantees that it is valid with respect to the rules defining the
grammar. Finally, semantical correctness ensures that the types, conditions and
expressions are consistent and match the data model. For instance, in semantically
correct queries comparisons of attributes with literal values use the same data type,
and the attributes used in conditions refer to an object type which has actually been
specified in the from clause.

The OQL query editor has been developed based on an EBNF definition of the
query language and using the parser generator JavaCC [7]. The generated lexer and
parser classes allow the addition of semantic actions required to distinguish equally
defined identifier tokens in different contexts and to connect the repository of
modeling elements in order to compute sensitive suggestions for the next inputs in the
given context. Depending of the current position, the suggestions may include
grammar terminals such as keywords, brackets or comparators, as well as names of
types and attributes as defined in the data model. If the input is syntactically incorrect,
the parser issues an error message listing the expected tokens, even if the input is still
incomplete.

The following example shows a valid OQL query where syntactical and
semantical correctness is highlighted.

select min sceneIndex, max sceneIndex
from SRTM1.X-SAR.IFDS
where
 (dataTakeOrbit = 61 and availability = 'PRELIMINARY'
 and there exists no corresponding SRTM1.X-SAR.IFDS
 with equal dataTakeOrbit and equal sceneIndex
 where availability = 'EXISTING')

This query computes the scene index range of the interferometric dataset products
(Shuttle Radar Topography Mission) on orbit number 61, which have not been
processed yet and therefore are catalogued only with a preliminary status.

5.3 Repository-related Context

Interactive editors supporting input completion based on a static information model
are common in human machine interfaces. Less common is the capability to
determine the correctness of partial expressions. Rather infrequent, however, is the
capability to validate inputs against the dynamic data model.

To be able to give suggestions for elements of the data model and to check
semantical correctness, the query editor retrieves information from the repository of
modeling elements. The first information retrieved is the list of available object types
which can be specified in the from clause of the query. Each object type is defined
by its name and a list of identifying and describing attributes. In subsequent actions,
the query editor retrieves meta information about selected attributes, such as data
type, valid values, value ranges and structure slots.

Depending on the selected object type, the specific attributes describing this type
are suggested to be included after select or within the condition of the query.
Structured attributes can be expanded to their slot attributes. As each attribute has a
well-defined data type, the editor can ensure the correct choice of operations,

comparators and literals within expressions, e.g. not allowing the comparison of a
numeric attribute with a date literal. The editor is able to recognise specified set
attributes and references via properties of the corresponding modeling elements and is
able to suggest appropriate conditions on the set elements or referenced object types.

Fig. 6 shows the context-sensitive OQL editor with a partial query. The object type
has already been selected and a where condition has been partially specified. On
typing a control key, the editor shows a pop-up menu with a collection of suggested
valid language tokens or data model elements to be entered next. When the query has
been completely specified this way, it is again validated and then sent to the inventory
for execution. The Operating Tool displays the results in a table and on the map.

Fig. 6. Context-sensitive OQL Editor Embedded in the DIMS Operating Tool

6 Evaluation

The object query language editor of the Product Library illustrates the benefits of
context-sensitivity in interactive library applications. This editor supports an easy ad-
hoc specification of complex search queries which are syntactically correct and
semantically meaningful. The knowledge exploited for context-sensitivity consists of
the static grammar of the query language and the dynamic data model of the library.
Therefore the editor goes beyond classical language-directed or syntax-directed
editors based on common compiler design [6].

The approach to develop a language based editor using a parser generator is very
effective. One of its features is its declarative approach as opposed to developing a
dedicated imperative program which of course would depend tightly on the grammar.

It turned out in practice that grammar changes - which are more frequent than one
would assume at first sight - could indeed be implemented in a more straight forward
way as compared to a pure programmatic approach.

The general procedure to generate code with the aid of the parser generator instead
of writing it by hand is helpful and prevents code failures. The usage of context
information and metadata, especially data provided by the meta model, makes it
possible to develop an editor which provides the user with information matching at
the current position of the query. As mentioned above, the editor is able to validate
the input not only syntactically but also semantically. Our evaluation showed that the
number of erroneous or unreasonable queries has decreased significantly. Users report
that they found that the error messages produced by the syntax checker are well
understandable and helpful. On the semantical level the type checks for literals,
operators and attributes help constructing a valid query. Very good acceptance
received the context-aware automatic suggestion of valid attributes that takes into
account the current product type and other content-related contextual properties.

As the editor is based on a parser, it provides the possibility to support the user at
every position of the query. Taking a look at very powerful IDEs like Eclipse, it can
be seen that this is not the case in every IDE. The approach entails a lot of possible
features that can be implemented to provide the user with more help and information.
The editor turned out to be useful for both kinds of users, beginners and professionals.
The former one gets help in any situation. The latter one, already knowing the syntax
of the language, only takes the assistant to get metadata information, especially from
the available models. In most cases the usage of meta model information takes place
in the background. In any case there is no need to look up the documentation of the
data model or the OQL syntax as in former days. Moreover, OQL features that have
seldom been used are now more frequently “detected” by the users.

The query example provided in section 5.2 illustrates the power and expressiveness
of OQL compared to some SQL catalogue look-up in a pure relational system: This
query can easily be formulated with the help of the context-sensitive editor, but it
corresponds to the following translated SQL code, which is quite hard to be specified
and understood:

SELECT
 MIN(t.intermediateSceneI), MAX(t.intermediateSceneI)
FROM M_SRTM1XSARIFDS t
WHERE (
 t.dataTakeOrbit = '61' AND
 t.availability = 'PRELIMINARY' AND
 NOT EXISTS (
 SELECT unique_id
 FROM M_SRTM1XSARIFDS r
 WHERE (
 r.availability = 'EXISTING' AND
 r.dataTakeOrbit = t.dataTakeOrbit AND
 r.intermediateSceneI = t.intermediateSceneI)))

Therefore the interactive query editor allows operators and library users to specify
ad-hoc queries without requiring detailed knowledge about the data model and
without being an expert on SQL.

The context-sensitive interactive query editor is an important constituent of the
sustainability of the DIMS Product Library, which has not only to cope with a

permanently growing amount of data and diversity of information, but also to
integrate existing digital archives and provide application-level interfaces for other
services to cover all earth observation ground system tasks of product processing,
monitoring, long-term storage, ordering and delivery.

7 Conclusion

This paper addresses the problem of user support in a very large digital library
system. In particular, extensions of the data model and dynamic library content put a
heavy burden on the user who has to extract application-specific data using a standard
query language. We have shown how a context-sensitive editor can be constructed
and integrated into the system that supports the user in formulating his or her queries.
The editor is aware of the underlying data model as well as (part of) the dynamic
content of the library and thus is able to propose syntactically correct and
semantically meaningful continuations of a query. An evaluation has shown that the
context-aware editor significantly improves user-friendliness und usability of the
DIMS digital library system.

Acknowledgments. Special thanks to our student Ulrich Frank who significantly
supported this work by investigation, assessment and prototyping. We also thank
Sven Kröger, DLR, for his support during prototyping and integration.

References

1. Mikusch, E., Diedrich, E., Göhmann, M., Kiemle, S., Reck, C., Reißig, R., Schmidt, K.,
Wildegger, W., Wolfmüller, M.: Data Information and Management System for the
Production, Archiving and Distribution of Earth Observation Products. Data Systems in
Aerospace 2000, EUROSPACE. ESA Publications Division, SP-457, Noordwijk (2000)

2. Kiemle, S.: From Digital Archive to Digital Library – a Middleware for Earth-Observation
Data Management. 6th European Conference on Research and Advanced Technology for
Digital Libraries, ECDL 2002 Proceedings, Lecture Notes in Computer Science, Springer-
Verlag, Berlin Heidelberg, (2002)

3. Sophie Cluet: Designing OQL: Allowing objects to be queried, Information Systems,
Volume 23, Issue 5, July 1998, pages 279-305.

4. German TerraSAR-X Radar Satellite Mission homepage at the German Aerospace Center.
Available in the WWW at http://www.dlr.de/tsx/start_en.htm

5. Object Management Group (OMG). Common Warehouse Metamodel (CWM) Specification.
Version 1.1, volume 1. March 2003. Available in the WWW at
http://www.omg.org/docs/formal/03-03-02.pdf

6. Grune, D., Bal, H., Jacobs, C., Langendoen, K.: Modern Compiler Design. John Wiley
(2002)

7. javaCC project home. Available in the WWW at https://javacc.dev.java.net/, last visited
13/03/2007.

